Advanced Search
MyIDEAS: Login

Adaptive Estimation Of Error Correction Models

Contents:

Author Info

  • Hodgson, Douglas J.

Abstract

This paper considers adaptive maximum likelihood estimation of reduced rank vector error correction models. It is shown that such models can be asymptotically efficiently estimated even in the absence of knowledge of the shape of the density function of the innovation sequence, provided that this density is symmetric. The construction of the estimator, involving the nonparametric kernel estimation of the unknown density using the residuals of a consistent preliminary estimator, is described, and its asymptotic distribution is derived. Asymptotic efficiency gains over the Gaussian pseudo maximum likelihood estimator are evaluated for elliptically symmetric innovations.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://journals.cambridge.org/abstract_S0266466698141026
File Function: link to article abstract page
Download Restriction: no

Bibliographic Info

Article provided by Cambridge University Press in its journal Econometric Theory.

Volume (Year): 14 (1998)
Issue (Month): 01 (February)
Pages: 44-69

as in new window
Handle: RePEc:cup:etheor:v:14:y:1998:i:01:p:44-69_14

Contact details of provider:
Postal: The Edinburgh Building, Shaftesbury Road, Cambridge CB2 2RU UK
Fax: +44 (0)1223 325150
Web page: http://journals.cambridge.org/jid_ECTProvider-Email:journals@cambridge.org

Related research

Keywords:

Other versions of this item:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Hodgson, D.J., 1995. "Adaptive Estimation of Cointegrating Regressions with ARMA Errors," RCER Working Papers 408, University of Rochester - Center for Economic Research (RCER).
  2. Jushan Bai & Serena Ng, 1998. "A Test for Conditional Symmetry in Time Series Models," Boston College Working Papers in Economics 410, Boston College Department of Economics.
  3. Douglas J. Hodgson & Oliver Linton & Keith Vorkink, 2001. "Testing the Capital Asset Pricing Model Efficiently Under Elliptical Symmetry: A Semiparametric Approach," Cahiers de recherche CREFE / CREFE Working Papers 143, CREFE, Université du Québec à Montréal.
  4. Douglas Hodgson, 2002. "Semiparametric Efficient Estimation of the Mean of a Time Series in the Presence of Conditional Heterogeneity of Unknown Form," Cahiers de recherche CREFE / CREFE Working Papers 146, CREFE, Université du Québec à Montréal.
  5. H. Peter Boswijk & Andre Lucas & Nick Taylor, 1999. "A Comparison of Parametric, Semi-nonparametric, Adaptive, and Nonparametric Cointegration Tests," Tinbergen Institute Discussion Papers 99-012/4, Tinbergen Institute.
  6. Bai, Jushan & Ng, Serena, 2001. "A consistent test for conditional symmetry in time series models," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 225-258, July.
  7. Alicia Pérez Alonso, 2006. "A Bootstrap Approach To Test The Conditional Symmetry In Time Series Models," Working Papers. Serie AD 2006-18, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
  8. Boswijk, H. Peter & Lucas, Andre, 2002. "Semi-nonparametric cointegration testing," Journal of Econometrics, Elsevier, vol. 108(2), pages 253-280, June.
  9. Marc Hallin & Ramon van den Akker & Bas Werker, 2012. "Rank-Based Tests of the Cointegrating Rank in Semiparametric Error Correction Models," Working Papers ECARES ECARES 2012-042, ULB -- Universite Libre de Bruxelles.
  10. repec:dgr:uvatin:2099012 is not listed on IDEAS
  11. H. Peter Boswijk & Andre Lucas & Nick Taylor, 1999. "A Comparison of Parametric, Semi-nonparametric, Adaptive, and Nonparametric Cointegration Tests," Tinbergen Institute Discussion Papers 99-012/4, Tinbergen Institute.
  12. Douglas Hodgson & Barrett Slade & Keith Vorkink, 2006. "Constructing Commercial Indices: A Semiparametric Adaptive Estimator Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 32(2), pages 151-168, March.
  13. Boswijk, H. Peter & Lucas, André & Taylor, Nick, 1998. "A comparison of parametric, semi-nonparametric, adaptive and nonparametric tests," Serie Research Memoranda 0062, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
  14. Douglas J. Hodgson & Oliver Linton & Keith Vorkink, 2004. "Testing forward exchange rate unbiasedness efficiently: a semiparametric approach," Journal of Applied Economics, Universidad del CEMA, vol. 0, pages 325-353, November.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:14:y:1998:i:01:p:44-69_14. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Keith Waters).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.