IDEAS home Printed from https://ideas.repec.org/a/bla/wireae/v12y2023i1ne460.html
   My bibliography  Save this article

Distributed energy resource management systems—DERMS: State of the art and how to move forward

Author

Listed:
  • Luka Strezoski

Abstract

Due to an ever‐increasing rise in proliferation of distributed energy resources (DERs), the paradigm of passive electrical distribution networks is shifting toward active distribution systems. This new environment introduces a plethora of challenges that cannot be managed by traditional tools, whose utilization could compromise the reliability and efficient operation of distribution feeders. This article systematically reviews state of the art in different DERs management software solutions available today. Additionally, it establishes distinguished roles and responsibilities of different levels of hierarchy in distinct solutions that are all commonly called DERs management systems—DERMS (e.g., fully centralized versus fully decentralized DER management solutions). Lastly, it offers a viewpoint on the directions that hold potential for the power system community and industry to explore for further developments of more robust and intelligent DERMS, to successfully enable efficient transition into a new era of clean and sustainable power systems, encompassing active and dynamically changing distribution circuits. This article is categorized under: Climate and Environment > Net Zero Planning and Decarbonization Energy and Power Systems > Distributed Generation Energy and Power Systems > Energy Management

Suggested Citation

  • Luka Strezoski, 2023. "Distributed energy resource management systems—DERMS: State of the art and how to move forward," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(1), January.
  • Handle: RePEc:bla:wireae:v:12:y:2023:i:1:n:e460
    DOI: 10.1002/wene.460
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/wene.460
    Download Restriction: no

    File URL: https://libkey.io/10.1002/wene.460?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Leandro Lind & Rafael Cossent & José Pablo Chaves‐Ávila & Tomás Gómez San Román, 2019. "Transmission and distribution coordination in power systems with high shares of distributed energy resources providing balancing and congestion management services," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(6), November.
    2. Mokryani, Geev & Hu, Yim Fun & Papadopoulos, Panagiotis & Niknam, Taher & Aghaei, Jamshid, 2017. "Deterministic approach for active distribution networks planning with high penetration of wind and solar power," Renewable Energy, Elsevier, vol. 113(C), pages 942-951.
    3. Amirhossein Sajadi & Luka Strezoski & Vladimir Strezoski & Marija Prica & Kenneth A. Loparo, 2019. "Integration of renewable energy systems and challenges for dynamics, control, and automation of electrical power systems," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(1), January.
    4. Huang, Yu Wen & Kittner, Noah & Kammen, Daniel M., 2019. "ASEAN grid flexibility: Preparedness for grid integration of renewable energy," Energy Policy, Elsevier, vol. 128(C), pages 711-726.
    5. Pedro Faria, 2019. "Distributed Energy Resources Management," Energies, MDPI, vol. 12(3), pages 1-3, February.
    6. Tomi Medved & Gašper Artač & Andrej F. Gubina, 2018. "The use of intelligent aggregator agents for advanced control of demand response," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(3), May.
    7. Pavani Ponnaganti & Jayakrishnan R Pillai & Birgitte Bak‐Jensen, 2018. "Opportunities and challenges of demand response in active distribution networks," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(1), January.
    8. Spees, Kathleen & Lave, Lester B., 2007. "Demand Response and Electricity Market Efficiency," The Electricity Journal, Elsevier, vol. 20(3), pages 69-85, April.
    9. Pedro Faria & Zita Vale, 2019. "Distributed Energy Resources Management 2018," Energies, MDPI, vol. 13(1), pages 1-4, December.
    10. Mohammad Zain ul Abideen & Omar Ellabban & Luluwah Al-Fagih, 2020. "A Review of the Tools and Methods for Distribution Networks’ Hosting Capacity Calculation," Energies, MDPI, vol. 13(11), pages 1-25, June.
    11. Fabrizio Pilo & Gianni Celli & Emilio Ghiani & Gian Giuseppe Soma, 2013. "New electricity distribution network planning approaches for integrating renewable," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(2), pages 140-157, March.
    12. Scott P. Burger, Jesse D. Jenkins, Carlos Batlle, and Ignacio J. Pérez-Arriaga, 2019. "Restructuring Revisited Part 1: Competition in Electricity Distribution Systems," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    13. Aidan Tuohy & Ben Kaun & Robert Entriken, 2014. "Storage and demand-side options for integrating wind power," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(1), pages 93-109, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    2. Peter D. Lund & John Byrne, 2020. "Little time left to reverse emissions—Growing hope despite disappointing CO2 trend," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(1), January.
    3. Chaves, J. P. & Cossent, R. & Gómez San Román, T. & Linares, P. & Rivier, M., 2023. "An assessment of the European electricity market reform options and a pragmatic proposal," Cambridge Working Papers in Economics 2325, Faculty of Economics, University of Cambridge.
    4. Rebenaque, Olivier & Schmitt, Carlo & Schumann, Klemens & Dronne, Théo & Roques, Fabien, 2023. "Success of local flexibility market implementation: A review of current projects," Utilities Policy, Elsevier, vol. 80(C).
    5. Ma. Janice J. Gumasing & Alyssa Bayola & Sebastian Luis Bugayong & Keithzi Rhaz Cantona, 2023. "Determining the Factors Affecting Filipinos’ Acceptance of the Use of Renewable Energies: A Pro-Environmental Planned Behavior Model," Sustainability, MDPI, vol. 15(9), pages 1-21, May.
    6. Kharrazi, A. & Sreeram, V. & Mishra, Y., 2020. "Assessment techniques of the impact of grid-tied rooftop photovoltaic generation on the power quality of low voltage distribution network - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    7. Junlakarn, Siripha & Kittner, Noah & Tongsopit, Sopitsuda & Saelim, Supawan, 2021. "A cross-country comparison of compensation mechanisms for distributed photovoltaics in the Philippines, Thailand, and Vietnam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    8. Illia Diahovchenko & Lubov Petrichenko, 2022. "Comparative Analysis of Power Distribution Systems with Individual Prosumers Owing Photovoltaic Installations and Solar Energy Communities in Terms of Profitability and Hosting Capacity," Energies, MDPI, vol. 15(23), pages 1-20, November.
    9. Jim Lewis & Kerrie Mengersen & Laurie Buys & Desley Vine & John Bell & Peter Morris & Gerard Ledwich, 2015. "Systems Modelling of the Socio-Technical Aspects of Residential Electricity Use and Network Peak Demand," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-21, July.
    10. Shah Rukh Abbas & Syed Ali Abbas Kazmi & Muhammad Naqvi & Adeel Javed & Salman Raza Naqvi & Kafait Ullah & Tauseef-ur-Rehman Khan & Dong Ryeol Shin, 2020. "Impact Analysis of Large-Scale Wind Farms Integration in Weak Transmission Grid from Technical Perspectives," Energies, MDPI, vol. 13(20), pages 1-32, October.
    11. Wei Chen & Yongle Tian & Kaiming Zheng & Nana Wan, 2023. "Influences of mechanisms on investment in renewable energy storage equipment," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12569-12595, November.
    12. Shuguang Liu & Jiayi Wang & Yin Long, 2023. "Research into the Spatiotemporal Characteristics and Influencing Factors of Technological Innovation in China’s Natural Gas Industry from the Perspective of Energy Transition," Sustainability, MDPI, vol. 15(9), pages 1-34, April.
    13. Tae Hyun Yoo & Hyeongon Park & Jae-Kun Lyu & Jong-Keun Park, 2014. "Determining the Interruptible Load with Strategic Behavior in a Competitive Electricity Market," Energies, MDPI, vol. 8(1), pages 1-21, December.
    14. Pedro Faria & Zita Vale, 2019. "Distributed Energy Resources Management 2018," Energies, MDPI, vol. 13(1), pages 1-4, December.
    15. Yoo, Tae-Hyun & Ko, Woong & Rhee, Chang-Ho & Park, Jong-Keun, 2017. "The incentive announcement effect of demand response on market power mitigation in the electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 545-554.
    16. Yanine, Franco Fernando & Caballero, Federico I. & Sauma, Enzo E. & Córdova, Felisa M., 2014. "Building sustainable energy systems: Homeostatic control of grid-connected microgrids, as a means to reconcile power supply and energy demand response management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1168-1191.
    17. Choi, Jun-Ki & Bakshi, Bhavik R. & Hubacek, Klaus & Nader, Jordan, 2016. "A sequential input–output framework to analyze the economic and environmental implications of energy policies: Gas taxes and fuel subsidies," Applied Energy, Elsevier, vol. 184(C), pages 830-839.
    18. Matsui, Kanae & Ochiai, Hideya & Yamagata, Yoshiki, 2014. "Feedback on electricity usage for home energy management: A social experiment in a local village of cold region," Applied Energy, Elsevier, vol. 120(C), pages 159-168.
    19. Peter Warren, 2018. "Demand-side policy: Global evidence base and implementation patterns," Energy & Environment, , vol. 29(5), pages 706-731, August.
    20. Giulietti, Monica & Le Coq, Chloé & Willems, Bert & Anaya, Karim, 2019. "Smart Consumers in the Internet of Energy : Flexibility Markets & Services from Distributed Energy Resources," Other publications TiSEM 2edb43b5-bbd6-487d-abdf-7, Tilburg University, School of Economics and Management.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:wireae:v:12:y:2023:i:1:n:e460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=2041-8396 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.