IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v48y2021i4p1256-1276.html
   My bibliography  Save this article

Functional inference on rotational curves under sample‐specific group actions and identification of human gait

Author

Listed:
  • Fabian J.E. Telschow
  • Michael R. Pierrynowski
  • Stephan F. Huckemann

Abstract

Inspired by the problem of gait reproducibility (reidentifying individuals across doctor's visits) we develop two‐sample permutation tests under a sample‐specific group action on Lie groups with a bi‐invariant Riemannian metric. These tests rely on consistent estimators and pairwise curve alignment. To this end, we propose Gaussian perturbation models and for the special case of curves on the group of 3D rotations we provide asymptotic consistency and, employing a quaternion point of view, fast spatial alignment of pointwise extrinsic mean curves. In our application to rotations of the tibia versus the femur at the knee joint under the spatial action of marker placement and the temporal action of different walking speeds, obtained from an experiment, we solve the problem of gait reproducibility.

Suggested Citation

  • Fabian J.E. Telschow & Michael R. Pierrynowski & Stephan F. Huckemann, 2021. "Functional inference on rotational curves under sample‐specific group actions and identification of human gait," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(4), pages 1256-1276, December.
  • Handle: RePEc:bla:scjsta:v:48:y:2021:i:4:p:1256-1276
    DOI: 10.1111/sjos.12488
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12488
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12488?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ellingson, Leif & Patrangenaru, Vic & Ruymgaart, Frits, 2013. "Nonparametric estimation of means on Hilbert manifolds and extrinsic analysis of mean shapes of contours," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 317-333.
    2. Crane, M. & Patrangenaru, V., 2011. "Random change on a Lie group and mean glaucomatous projective shape change detection from stereo pair images," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 225-237, February.
    3. Livio Corain & Viatcheslav Melas & Andrey Pepelyshev & Luigi Salmaso, 2014. "New insights on permutation approach for hypothesis testing on functional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(3), pages 339-356, September.
    4. Phipson Belinda & Smyth Gordon K, 2010. "Permutation P-values Should Never Be Zero: Calculating Exact P-values When Permutations Are Randomly Drawn," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-16, October.
    5. John T. Kent & Kanti V. Mardia, 1997. "Consistency of Procrustes Estimators," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(1), pages 281-290.
    6. Stephan Huckemann, 2011. "Inference on 3D Procrustes Means: Tree Bole Growth, Rank Deficient Diffusion Tensors and Perturbation Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 38(3), pages 424-446, September.
    7. Mingfei Qiu & Robert Paige & Vic Patrangenaru, 2019. "A nonparametric approach to 3D shape analysis from digital camera images – II," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(15), pages 2677-2699, November.
    8. J. Ramsay, 1982. "When the data are functions," Psychometrika, Springer;The Psychometric Society, vol. 47(4), pages 379-396, December.
    9. Simone Vantini, 2012. "On the definition of phase and amplitude variability in functional data analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(4), pages 676-696, December.
    10. Rivest, Louis-Paul & Baillargeon, Sophie & Pierrynowski, Michael, 2008. "A Directional Model for the Estimation of the Rotation Axes of the Ankle Joint," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1060-1069.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Victor Patrangenaru & Robert Paige & K. David Yao & Mingfei Qiu & David Lester, 2016. "Projective shape analysis of contours and finite 3D configurations from digital camera images," Statistical Papers, Springer, vol. 57(4), pages 1017-1040, December.
    2. Osborne, Daniel & Patrangenaru, Vic & Ellingson, Leif & Groisser, David & Schwartzman, Armin, 2013. "Nonparametric two-sample tests on homogeneous Riemannian manifolds, Cholesky decompositions and Diffusion Tensor Image analysis," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 163-175.
    3. Pini, Alessia & Spreafico, Lorenzo & Vantini, Simone & Vietti, Alessandro, 2019. "Multi-aspect local inference for functional data: Analysis of ultrasound tongue profiles," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 162-185.
    4. Vic Patrangenaru & Peter Bubenik & Robert L. Paige & Daniel Osborne, 2019. "Challenges in Topological Object Data Analysis," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 244-271, February.
    5. Francesca Ieva & Anna Paganoni, 2015. "Discussion of “multivariate functional outlier detection” by M. Hubert, P. Rousseeuw and P. Segaert," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 217-221, July.
    6. Masha Shunko & Julie Niederhoff & Yaroslav Rosokha, 2018. "Humans Are Not Machines: The Behavioral Impact of Queueing Design on Service Time," Management Science, INFORMS, vol. 64(1), pages 453-473, January.
    7. Cristhian Leonardo Urbano-Leon & Manuel Escabias & Diana Paola Ovalle-Muñoz & Javier Olaya-Ochoa, 2023. "Scalar Variance and Scalar Correlation for Functional Data," Mathematics, MDPI, vol. 11(6), pages 1-20, March.
    8. Philippe Besse & J. Ramsay, 1986. "Principal components analysis of sampled functions," Psychometrika, Springer;The Psychometric Society, vol. 51(2), pages 285-311, June.
    9. Konrad Abramowicz & Alessia Pini & Lina Schelin & Sara Sjöstedt de Luna & Aymeric Stamm & Simone Vantini, 2023. "Domain selection and familywise error rate for functional data: A unified framework," Biometrics, The International Biometric Society, vol. 79(2), pages 1119-1132, June.
    10. Romero, Julian & Rosokha, Yaroslav, 2018. "Constructing strategies in the indefinitely repeated prisoner’s dilemma game," European Economic Review, Elsevier, vol. 104(C), pages 185-219.
    11. Zhenjie Liang & Futian Weng & Yuanting Ma & Yan Xu & Miao Zhu & Cai Yang, 2022. "Measurement and Analysis of High Frequency Assert Volatility Based on Functional Data Analysis," Mathematics, MDPI, vol. 10(7), pages 1-11, April.
    12. Silke Janitza & Ender Celik & Anne-Laure Boulesteix, 2018. "A computationally fast variable importance test for random forests for high-dimensional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(4), pages 885-915, December.
    13. Farag Shuweihdi & Charles C. Taylor & Arief Gusnanto, 2017. "Classification of form under heterogeneity and non-isotropic errors," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(8), pages 1495-1508, June.
    14. Kalogridis, Ioannis & Van Aelst, Stefan, 2023. "Robust penalized estimators for functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
    15. Niels Lundtorp Olsen & Bo Markussen & Lars Lau Raket, 2018. "Simultaneous inference for misaligned multivariate functional data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1147-1176, November.
    16. Mariano Valderrama, 2007. "An overview to modelling functional data," Computational Statistics, Springer, vol. 22(3), pages 331-334, September.
    17. Crane, M. & Patrangenaru, V., 2011. "Random change on a Lie group and mean glaucomatous projective shape change detection from stereo pair images," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 225-237, February.
    18. Wang, Bingling & Li, Yingxing & Härdle, Wolfgang Karl, 2022. "K-expectiles clustering," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    19. Jia Guo & Shiyan Ma & Xiang Li, 2022. "Exploring the Differences of Sustainable Urban Development Levels from the Perspective of Multivariate Functional Data Analysis: A Case Study of 33 Cities in China," Sustainability, MDPI, vol. 14(19), pages 1-19, October.
    20. Jianping Zhu & Futian Weng & Muni Zhuang & Xin Lu & Xu Tan & Songjie Lin & Ruoyi Zhang, 2022. "Revealing Public Opinion towards the COVID-19 Vaccine with Weibo Data in China: BertFDA-Based Model," IJERPH, MDPI, vol. 19(20), pages 1-26, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:48:y:2021:i:4:p:1256-1276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.