IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v42y2015i3p775-797.html
   My bibliography  Save this article

Uniform Ergodicity of the Particle Gibbs Sampler

Author

Listed:
  • Fredrik Lindsten
  • Randal Douc
  • Eric Moulines

Abstract

type="main" xml:id="sjos12136-abs-0001"> The particle Gibbs sampler is a systematic way of using a particle filter within Markov chain Monte Carlo. This results in an off-the-shelf Markov kernel on the space of state trajectories, which can be used to simulate from the full joint smoothing distribution for a state space model in a Markov chain Monte Carlo scheme. We show that the particle Gibbs Markov kernel is uniformly ergodic under rather general assumptions, which we will carefully review and discuss. In particular, we provide an explicit rate of convergence, which reveals that (i) for fixed number of data points, the convergence rate can be made arbitrarily good by increasing the number of particles and (ii) under general mixing assumptions, the convergence rate can be kept constant by increasing the number of particles superlinearly with the number of observations. We illustrate the applicability of our result by studying in detail a common stochastic volatility model with a non-compact state space.

Suggested Citation

  • Fredrik Lindsten & Randal Douc & Eric Moulines, 2015. "Uniform Ergodicity of the Particle Gibbs Sampler," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 775-797, September.
  • Handle: RePEc:bla:scjsta:v:42:y:2015:i:3:p:775-797
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/sjos.12136
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Godsill, Simon J. & Doucet, Arnaud & West, Mike, 2004. "Monte Carlo Smoothing for Nonlinear Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 156-168, January.
    2. Paul Fearnhead & David Wyncoll & Jonathan Tawn, 2010. "A sequential smoothing algorithm with linear computational cost," Biometrika, Biometrika Trust, vol. 97(2), pages 447-464.
    3. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
    4. Pitt, Michael K. & Silva, Ralph dos Santos & Giordani, Paolo & Kohn, Robert, 2012. "On some properties of Markov chain Monte Carlo simulation methods based on the particle filter," Journal of Econometrics, Elsevier, vol. 171(2), pages 134-151.
    5. Anthony Lee & Krzysztof Łatuszyński, 2014. "Variance bounding and geometric ergodicity of Markov chain Monte Carlo kernels for approximate Bayesian computation," Biometrika, Biometrika Trust, vol. 101(3), pages 655-671.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen Gong & David S. Stoffer, 2021. "A Note on Efficient Fitting of Stochastic Volatility Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(2), pages 186-200, March.
    2. Del Moral, Pierre & Jasra, Ajay, 2018. "A sharp first order analysis of Feynman–Kac particle models, Part II: Particle Gibbs samplers," Stochastic Processes and their Applications, Elsevier, vol. 128(1), pages 354-371.
    3. Matti Vihola & Jouni Helske & Jordan Franks, 2020. "Importance sampling type estimators based on approximate marginal Markov chain Monte Carlo," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1339-1376, December.
    4. Vergé, Christelle & Morio, Jérôme & Moral, Pierre Del, 2016. "An island particle algorithm for rare event analysis," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 63-75.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scharth, Marcel & Kohn, Robert, 2016. "Particle efficient importance sampling," Journal of Econometrics, Elsevier, vol. 190(1), pages 133-147.
    2. Matti Vihola & Jouni Helske & Jordan Franks, 2020. "Importance sampling type estimators based on approximate marginal Markov chain Monte Carlo," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1339-1376, December.
    3. Deschamps, P., 2015. "Alternative Formulation of the Leverage Effect in a Stochastic Volatility Model with Asymmetric Heavy-Tailed Errors," LIDAM Discussion Papers CORE 2015020, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Cheng, Jing & Chan, Ngai Hang, 2019. "Efficient inference for nonlinear state space models: An automatic sample size selection rule," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 143-154.
    5. Kim, Jaeho, 2015. "Bayesian Inference in a Non-linear/Non-Gaussian Switching State Space Model: Regime-dependent Leverage Effect in the U.S. Stock Market," MPRA Paper 67153, University Library of Munich, Germany.
    6. Elmar Mertens & James M. Nason, 2020. "Inflation and professional forecast dynamics: An evaluation of stickiness, persistence, and volatility," Quantitative Economics, Econometric Society, vol. 11(4), pages 1485-1520, November.
    7. Pratiti Chatterjee & David Gunawan & Robert Kohn, 2020. "The Interaction Between Credit Constraints and Uncertainty Shocks," Papers 2004.14719, arXiv.org.
    8. repec:wyi:journl:002173 is not listed on IDEAS
    9. Bournakis, Ioannis & Tsionas, Mike G., 2023. "A Non-Parametric Estimation of Productivity with Idiosyncratic and Aggregate Shocks: The Role of Research and Development (R&D) and Corporate Tax," MPRA Paper 118100, University Library of Munich, Germany.
    10. Lux, Thomas, 2020. "Bayesian estimation of agent-based models via adaptive particle Markov chain Monte Carlo," Economics Working Papers 2020-01, Christian-Albrechts-University of Kiel, Department of Economics.
    11. Delis, Manthos D. & Tsionas, Mike G., 2018. "Measuring management practices," International Journal of Production Economics, Elsevier, vol. 199(C), pages 65-77.
    12. Matias Quiroz & Robert Kohn & Mattias Villani & Minh-Ngoc Tran, 2019. "Speeding Up MCMC by Efficient Data Subsampling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 831-843, April.
    13. Tsionas, Mike G. & Michaelides, Panayotis G., 2017. "Bayesian analysis of chaos: The joint return-volatility dynamical system," MPRA Paper 80632, University Library of Munich, Germany.
    14. James M. Nason & Gregor W. Smith, 2021. "Measuring the slowly evolving trend in US inflation with professional forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 1-17, January.
    15. Virbickaitė, Audronė & Frey, Christoph & Macedo, Demian N., 2020. "Bayesian sequential stock return prediction through copulas," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    16. Tsionas, Mike G. & Michaelides, Panayotis G., 2017. "Neglected chaos in international stock markets: Bayesian analysis of the joint return–volatility dynamical system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 95-107.
    17. Golightly Andrew & Wilkinson Darren J., 2015. "Bayesian inference for Markov jump processes with informative observations," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(2), pages 169-188, April.
    18. Wei Wei & Asger Lunde, 2023. "Identifying Risk Factors and Their Premia: A Study on Electricity Prices," Journal of Financial Econometrics, Oxford University Press, vol. 21(5), pages 1647-1679.
    19. Calvet, Laurent-Emmanuel & Czellar , Veronika, 2011. "state-observation sampling and the econometrics of learning models," HEC Research Papers Series 947, HEC Paris.
    20. Bauwens, Luc & Dufays, Arnaud & Rombouts, Jeroen V.K., 2014. "Marginal likelihood for Markov-switching and change-point GARCH models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 508-522.
    21. Espen Bernton & Pierre E. Jacob & Mathieu Gerber & Christian P. Robert, 2019. "Approximate Bayesian computation with the Wasserstein distance," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 235-269, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:42:y:2015:i:3:p:775-797. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.