Advanced Search
MyIDEAS: Login

On Feedback Effects from Hedging Derivatives

Contents:

Author Info

  • Eckhard Platen
  • Martin Schweizer

Abstract

This paper proposes a new explanation for the smile and skewness effects in implied volatilities. Starting from a microeconomic equilibrium approach, we develop a diffusion model for stock prices explicitly incorporating the technical demand induced by hedging strategies. This leads to a stochastic volatility endogenously determined by agents' trading behavior. By using numerical methods for stochastic differential equations, we quantitatively substantiate the idea that option price distortions can be induced by feedback effects from hedging strategies. Copyright Blackwell Publishers 1998.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.blackwell-synergy.com/doi/abs/10.1111/1467-9965.00045
File Function: link to full text
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Wiley Blackwell in its journal Mathematical Finance.

Volume (Year): 8 (1998)
Issue (Month): 1 ()
Pages: 67-84

as in new window
Handle: RePEc:bla:mathfi:v:8:y:1998:i:1:p:67-84

Contact details of provider:
Web page: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627

Order Information:
Web: http://www.blackwellpublishing.com/subs.asp?ref=0960-1627

Related research

Keywords:

Other versions of this item:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Rubinstein, Mark, 1983. " Displaced Diffusion Option Pricing," Journal of Finance, American Finance Association, vol. 38(1), pages 213-17, March.
  2. Ball, Clifford A. & Roma, Antonio, 1994. "Stochastic Volatility Option Pricing," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 29(04), pages 589-607, December.
  3. Sanford J. Grossman, 1989. "An Analysis of the Implications for Stock and Futures Price Volatility of Program Trading and Dynamic Hedging Strategies," NBER Working Papers 2357, National Bureau of Economic Research, Inc.
  4. Jin-Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32.
  5. Jarrow, Robert A., 1994. "Derivative Security Markets, Market Manipulation, and Option Pricing Theory," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 29(02), pages 241-261, June.
  6. N. Hofmann & E. Platen & M. Schweizer, 1992. "Option Pricing under Incompleteness and Stochastic Volatility," Discussion Paper Serie B 209, University of Bonn, Germany.
  7. Heynen, Ronald & Kemna, Angelien & Vorst, Ton, 1994. "Analysis of the Term Structure of Implied Volatilities," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 29(01), pages 31-56, March.
  8. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
  9. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
  10. Rubinstein, Mark, 1994. " Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
  11. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-43.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:8:y:1998:i:1:p:67-84. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.