IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v185y2022i3p1030-1048.html
   My bibliography  Save this article

Dynamic modelling of mortality via mixtures of skewed distribution functions

Author

Listed:
  • Emanuele Aliverti
  • Stefano Mazzuco
  • Bruno Scarpa

Abstract

There has been growing interest on forecasting mortality. In this article, we propose a novel dynamic Bayesian approach for modelling and forecasting the age‐at‐death distribution, focusing on a three‐component mixture of a Dirac mass, a Gaussian distribution and a skew‐normal distribution. According to the specified model, the age‐at‐death distribution is characterized via seven parameters corresponding to the main aspects of infant, adult and old‐age mortality. The proposed approach focuses on coherent modelling of multiple countries, and following a Bayesian approach to inference we allow to borrow information across populations and to shrink parameters towards a common mean level, implicitly penalizing diverging scenarios. Dynamic modelling across years is induced through an hierarchical dynamic prior distribution that allows to characterize the temporal evolution of each mortality component and to forecast the age‐at‐death distribution. Empirical results on multiple countries indicate that the proposed approach outperforms popular methods for forecasting mortality, providing interpretable insights on its evolution.

Suggested Citation

  • Emanuele Aliverti & Stefano Mazzuco & Bruno Scarpa, 2022. "Dynamic modelling of mortality via mixtures of skewed distribution functions," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1030-1048, July.
  • Handle: RePEc:bla:jorssa:v:185:y:2022:i:3:p:1030-1048
    DOI: 10.1111/rssa.12808
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssa.12808
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssa.12808?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marie-Pier Bergeron-Boucher & Vladimir Canudas-Romo & James E. Oeppen & James W. Vaupel, 2017. "Coherent forecasts of mortality with compositional data analysis," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 37(17), pages 527-566.
    2. Stefano Mazzuco & Bruno Scarpa & Lucia Zanotto, 2018. "A mortality model based on a mixture distribution function," Population Studies, Taylor & Francis Journals, vol. 72(2), pages 191-200, May.
    3. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178, Decembrie.
    4. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    5. Jackie Li, 2013. "A Poisson common factor model for projecting mortality and life expectancy jointly for females and males," Population Studies, Taylor & Francis Journals, vol. 67(1), pages 111-126, March.
    6. Nan Li & Ronald Lee, 2005. "Coherent mortality forecasts for a group of populations: An extension of the lee-carter method," Demography, Springer;Population Association of America (PAA), vol. 42(3), pages 575-594, August.
    7. Patefield, Mike, 2000. "Fast and Accurate Calculation of Owen's T Function," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 5(i05).
    8. Petros Dellaportas & Adrian F. M. Smith & Photis Stavropoulos, 2001. "Bayesian analysis of mortality data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 164(2), pages 275-291.
    9. Siu Cheung & Jean-Marie Robine & Edward Tu & Graziella Caselli, 2005. "Three dimensions of the survival curve: horizontalization, verticalization, and longevity extension," Demography, Springer;Population Association of America (PAA), vol. 42(2), pages 243-258, May.
    10. Hyndman, Rob J. & Shahid Ullah, Md., 2007. "Robust forecasting of mortality and fertility rates: A functional data approach," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4942-4956, June.
    11. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Pengjie & Pantelous, Athanasios A. & Vahid, Farshid, 2023. "Multi-population mortality projection: The augmented common factor model with structural breaks," International Journal of Forecasting, Elsevier, vol. 39(1), pages 450-469.
    2. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 485564, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.
    3. Ainhoa-Elena Léger & Stefano Mazzuco, 2021. "What Can We Learn from the Functional Clustering of Mortality Data? An Application to the Human Mortality Database," European Journal of Population, Springer;European Association for Population Studies, vol. 37(4), pages 769-798, November.
    4. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    5. de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2016. "Coherent modeling of male and female mortality using Lee–Carter in a complex number framework," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 130-137.
    6. Marie-Pier Bergeron-Boucher & Søren Kjærgaard & James E. Oeppen & James W. Vaupel, 2019. "The impact of the choice of life table statistics when forecasting mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(43), pages 1235-1268.
    7. Carlo G. Camarda & Ugofilippo Basellini, 2021. "Smoothing, Decomposing and Forecasting Mortality Rates," European Journal of Population, Springer;European Association for Population Studies, vol. 37(3), pages 569-602, July.
    8. Kenneth Wong & Jackie Li & Sixian Tang, 2020. "A modified common factor model for modelling mortality jointly for both sexes," Journal of Population Research, Springer, vol. 37(2), pages 181-212, June.
    9. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2022. "Thirty years on: A review of the Lee-Carter method for forecasting mortality," SocArXiv 8u34d, Center for Open Science.
    10. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    11. de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2020. "A more meaningful parameterization of the Lee–Carter model," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 1-8.
    12. Hong Li & Johnny Siu-Hang Li, 2017. "Optimizing the Lee-Carter Approach in the Presence of Structural Changes in Time and Age Patterns of Mortality Improvements," Demography, Springer;Population Association of America (PAA), vol. 54(3), pages 1073-1095, June.
    13. Feng, Lingbing & Shi, Yanlin & Chang, Le, 2021. "Forecasting mortality with a hyperbolic spatial temporal VAR model," International Journal of Forecasting, Elsevier, vol. 37(1), pages 255-273.
    14. Tickle Leonie & Booth Heather, 2014. "The Longevity Prospects of Australian Seniors: An Evaluation of Forecast Method and Outcome," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 8(2), pages 1-34, July.
    15. Shang, Han Lin & Smith, Peter W.F. & Bijak, Jakub & Wiśniowski, Arkadiusz, 2016. "A multilevel functional data method for forecasting population, with an application to the United Kingdom," International Journal of Forecasting, Elsevier, vol. 32(3), pages 629-649.
    16. Yanlin Shi & Sixian Tang & Jackie Li, 2020. "A Two-Population Extension of the Exponential Smoothing State Space Model with a Smoothing Penalisation Scheme," Risks, MDPI, vol. 8(3), pages 1-18, June.
    17. Søren Kjærgaard & Yunus Emre Ergemen & Marie-Pier Bergeron Boucher & Jim Oeppen & Malene Kallestrup-Lamb, 2019. "Longevity forecasting by socio-economic groups using compositional data analysis," CREATES Research Papers 2019-08, Department of Economics and Business Economics, Aarhus University.
    18. Hong Li & Yanlin Shi, 2021. "Mortality Forecasting with an Age-Coherent Sparse VAR Model," Risks, MDPI, vol. 9(2), pages 1-19, February.
    19. Christina Bohk-Ewald & Marcus Ebeling & Roland Rau, 2017. "Lifespan Disparity as an Additional Indicator for Evaluating Mortality Forecasts," Demography, Springer;Population Association of America (PAA), vol. 54(4), pages 1559-1577, August.
    20. Li, Hong & Shi, Yanlin, 2021. "Forecasting mortality with international linkages: A global vector-autoregression approach," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 59-75.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:185:y:2022:i:3:p:1030-1048. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.