IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v24y2020i4p736-747.html
   My bibliography  Save this article

LCAart: Communicating industrial ecology at a human scale

Author

Listed:
  • Matthew J. Eckelman
  • Michelle M. Laboy

Abstract

This Forum piece describes a collaborative project between engineering and architecture to visualize some of the most influential results from industrial ecology using human‐scale, photorealistic images that are quantitatively accurate. Our goal was to apply visualization theories and practices from art and architecture to address a major communication problem in our field: though inspirational in concept, in practice much industrial ecology research is difficult to comprehend for the average person. Models are large and complex, metrics are esoteric, and results are often reported on a scale that is devoid of personal meaning. Our strategy was to place hidden flows and embodied emissions in plain sight, creating images that show the environmental implications of consumption as absurd insertions into scenes of daily life, at a scale that is relatable and personally meaningful. We also compare with and discuss other artistic efforts around the world in the oeuvre of “Consumption Art,” providing historical context. Industrial ecology envisions a world where production systems can incorporate social and environmental implications in real‐time, where policy is informed by our best understanding of trade‐offs and inequities, and where the public has an appreciation for what actions are meaningful, all with the goals of improving quality of life for all while safeguarding the environment and human health. Effective communication of our research is vital to build consensus for policy and action toward this vision, and one under‐appreciated aspect of communication in our field is the sympathetic power of Art.

Suggested Citation

  • Matthew J. Eckelman & Michelle M. Laboy, 2020. "LCAart: Communicating industrial ecology at a human scale," Journal of Industrial Ecology, Yale University, vol. 24(4), pages 736-747, August.
  • Handle: RePEc:bla:inecol:v:24:y:2020:i:4:p:736-747
    DOI: 10.1111/jiec.12978
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.12978
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.12978?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chapagain, A.K. & Hoekstra, A.Y., 2007. "The water footprint of coffee and tea consumption in the Netherlands," Ecological Economics, Elsevier, vol. 64(1), pages 109-118, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ignacio Cazcarro & Rosa Duarte & Miguel Martín-Retortillo & Vicente Pinilla & Ana Serrano, 2015. "How Sustainable is the Increase in the Water Footprint of the Spanish Agricultural Sector? A Provincial Analysis between 1955 and 2005–2010," Sustainability, MDPI, vol. 7(5), pages 1-26, April.
    2. Ehsan Qasemipour & Ali Abbasi & Farhad Tarahomi, 2020. "Water-Saving Scenarios Based on Input–Output Analysis and Virtual Water Concept: A Case in Iran," Sustainability, MDPI, vol. 12(3), pages 1-16, January.
    3. Wiedmann, Thomas, 2009. "A first empirical comparison of energy Footprints embodied in trade -- MRIO versus PLUM," Ecological Economics, Elsevier, vol. 68(7), pages 1975-1990, May.
    4. Okadera, Tomohiro & Geng, Yong & Fujita, Tsuyoshi & Dong, Huijuan & Liu, Zhu & Yoshida, Noboru & Kanazawa, Takaaki, 2015. "Evaluating the water footprint of the energy supply of Liaoning Province, China: A regional input–output analysis approach," Energy Policy, Elsevier, vol. 78(C), pages 148-157.
    5. Yu Zhang & Qing Tian & Huan Hu & Miao Yu, 2019. "Water Footprint of Food Consumption by Chinese Residents," IJERPH, MDPI, vol. 16(20), pages 1-15, October.
    6. Emma Moberg & Hanna Karlsson Potter & Amanda Wood & Per-Anders Hansson & Elin Röös, 2020. "Benchmarking the Swedish Diet Relative to Global and National Environmental Targets—Identification of Indicator Limitations and Data Gaps," Sustainability, MDPI, vol. 12(4), pages 1-22, February.
    7. Yu Zhang & Jin-he Zhang & Qing Tian, 2021. "Virtual Water Trade in the Service Sector: China’s Inbound Tourism as a Case Study," IJERPH, MDPI, vol. 18(4), pages 1-20, February.
    8. Grebitus, Carola & Steiner, Bodo & Veeman, Michele, 2015. "The roles of human values and generalized trust on stated preferences when food is labeled with environmental footprints: Insights from Germany," Food Policy, Elsevier, vol. 52(C), pages 84-91.
    9. Chapagain, A.K. & Hoekstra, A.Y., 2011. "The blue, green and grey water footprint of rice from production and consumption perspectives," Ecological Economics, Elsevier, vol. 70(4), pages 749-758, February.
    10. Giljum, Stefan & Burger, Eva & Hinterberger, Friedrich & Lutter, Stephan & Bruckner, Martin, 2011. "A comprehensive set of resource use indicators from the micro to the macro level," Resources, Conservation & Recycling, Elsevier, vol. 55(3), pages 300-308.
    11. Hoekstra, A.Y., 2009. "Human appropriation of natural capital: A comparison of ecological footprint and water footprint analysis," Ecological Economics, Elsevier, vol. 68(7), pages 1963-1974, May.
    12. Shuang Chen & Fangli Chen & Lisha Zhu & Qizheng Li & Xiaopeng Wang & Laili Wang, 2023. "A Spatial Water Footprint Assessment of Recycled Cotton T-Shirts: Case of Local Impacts in Selected China Provinces," Sustainability, MDPI, vol. 15(1), pages 1-15, January.
    13. Chen Zhang & Edward McBean & Jeanne Huang, 2014. "A Virtual Water Assessment Methodology for Cropping Pattern Investigation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(8), pages 2331-2349, June.
    14. Dongchun Ma & Chaofan Xian & Jing Zhang & Ruochen Zhang & Zhiyun Ouyang, 2015. "The Evaluation of Water Footprints and Sustainable Water Utilization in Beijing," Sustainability, MDPI, vol. 7(10), pages 1-16, September.
    15. R. R. Weerasooriya & L. P. K. Liyanage & R. H. K. Rathnappriya & W. B. M. A. C. Bandara & T. A. N. T. Perera & M. H. J. P. Gunarathna & G. Y. Jayasinghe, 2021. "Industrial water conservation by water footprint and sustainable development goals: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 12661-12709, September.
    16. Oulu, Martin, 2015. "The unequal exchange of Dutch cheese and Kenyan roses: Introducing and testing an LCA-based methodology for estimating ecologically unequal exchange," Ecological Economics, Elsevier, vol. 119(C), pages 372-383.
    17. Han-Shen Chen, 2015. "Using Water Footprints for Examining the Sustainable Development of Science Parks," Sustainability, MDPI, vol. 7(5), pages 1-21, May.
    18. Gössling, Stefan & Garrod, Brian & Aall, Carlo & Hille, John & Peeters, Paul, 2011. "Food management in tourism: Reducing tourism’s carbon ‘foodprint’," Tourism Management, Elsevier, vol. 32(3), pages 534-543.
    19. Markus Berger & Jazmin Campos & Mauro Carolli & Ianna Dantas & Silvia Forin & Ervin Kosatica & Annika Kramer & Natalia Mikosch & Hamideh Nouri & Anna Schlattmann & Falk Schmidt & Anna Schomberg & Elsa, 2021. "Advancing the Water Footprint into an Instrument to Support Achieving the SDGs – Recommendations from the “Water as a Global Resources” Research Initiative (GRoW)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(4), pages 1291-1298, March.
    20. Chen Cao & Xiaohan Lu & Xuyong Li, 2019. "Risk Assessment and Pressure Response Analysis of the Water Footprint of Agriculture and Livestock: A Case Study of the Beijing–Tianjin–Hebei Region in China," Sustainability, MDPI, vol. 11(13), pages 1-18, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:24:y:2020:i:4:p:736-747. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.