IDEAS home Printed from https://ideas.repec.org/a/aph/ajpbhl/1991816694-702_3.html
   My bibliography  Save this article

Asthmatic responses to airborne acid aerosols

Author

Listed:
  • Ostro, B.D.
  • Lipsett, M.J.
  • Wiener, M.B.
  • Selner, J.C.

Abstract

Background: Controlled exposure studies suggest that asthmatics may be more sensitive to the respiratory effects of acidic aerosols than individuals without asthma. This study investigates whether acidic aerosols and other air pollutants are associated with respiratory symptoms in free-living asthmatics. Methods: Daily concentrations of hydrogen ion (H+), nitric acid, fine particulates, sulfates and nitrates were obtained during an intensive air monitoring effort in Denver, Colorado, in the winter of 1987-88. A panel of 207 asthmatics recorded respiratory symptoms, frequency of medication use, and related information in daily diaries. We used a multiple regression time-series model to analyze which air pollutants, if any, were associated with health outcomes reported by study participants. Results: Airborne H+ was found to be significantly associated with several indicators of asthma status, including moderate or severe cough and shortness of breath. Cough was also associated with fine particulates, and shortness of breath with sulfates. Incorporating the participants' time spent outside and exercise intensity into the daily measure of exposure strengthened the association between these pollutants and asthmatic symptoms. Nitric acid and nitrates were not significantly associated with any respiratory symptom analyzed. Conclusions: In this population of asthmatics, several outdoor air pollutants, particularly airborne acidity, were associated with daily respiratory symptoms.

Suggested Citation

  • Ostro, B.D. & Lipsett, M.J. & Wiener, M.B. & Selner, J.C., 1991. "Asthmatic responses to airborne acid aerosols," American Journal of Public Health, American Public Health Association, vol. 81(6), pages 694-702.
  • Handle: RePEc:aph:ajpbhl:1991:81:6:694-702_3
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rowe, Robert D. & Lang, Carolyn M. & Chestnut, Lauraine G., 1996. "Critical factors in computing externalities for electricity resources," Resource and Energy Economics, Elsevier, vol. 18(4), pages 363-394, December.
    2. Anett C. Hansen & Harald K. Selte, 1997. "Air Pollution and Sick-leaves - is there a Connection? A Case Study using Air Pollution Data from Oslo," Discussion Papers 197, Statistics Norway, Research Department.
    3. Glenn P. Jenkins & Chun-Yan Kuo & Aygul Ozbafli, 2007. "Cost-Benefit Analysis Case Study on Regulations to Lower the Level of Sulphur in Gasoline," Development Discussion Papers 2007-08, JDI Executive Programs.
    4. Garg, Amit, 2011. "Pro-equity Effects of Ancillary Benefits of Climate Change Policies: A Case Study of Human Health Impacts of Outdoor Air Pollution in New Delhi," World Development, Elsevier, vol. 39(6), pages 1002-1025, June.
    5. McCubbin, Donald R. & Delucchi, Mark A., 1996. "The Social Cost of the Health Effects of Motor-Vehicle Air Pollution," University of California Transportation Center, Working Papers qt5jm6d2tc, University of California Transportation Center.
    6. Bao-Linh Tran & Ching-Cheng Chang & Chia-Sheng Hsu & Chi-Chung Chen & Wei-Chun Tseng & Shih-Hsun Hsu, 2019. "Threshold Effects of PM 2.5 Exposure on Particle-Related Mortality in China," IJERPH, MDPI, vol. 16(19), pages 1-18, September.
    7. Choi, Jungsoon & Fuentes, Montserrat & Reich, Brian J., 2009. "Spatial-temporal association between fine particulate matter and daily mortality," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2989-3000, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aph:ajpbhl:1991:81:6:694-702_3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F Baum (email available below). General contact details of provider: https://www.apha.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.