IDEAS home Printed from https://ideas.repec.org/a/ags/jasfmr/322711.html
   My bibliography  Save this article

Farm-Level Economics of Bioenergy in the Upper Missouri River Basin

Author

Listed:
  • Hanson, Eilish R.
  • Nagler, Amy
  • Ritten, John
  • Rashford, Benjamin

Abstract

No abstract is available for this item.

Suggested Citation

  • Hanson, Eilish R. & Nagler, Amy & Ritten, John & Rashford, Benjamin, 2022. "Farm-Level Economics of Bioenergy in the Upper Missouri River Basin," Journal of the ASFMRA, American Society of Farm Managers and Rural Appraisers, vol. 2022.
  • Handle: RePEc:ags:jasfmr:322711
    DOI: 10.22004/ag.econ.322711
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/322711/files/2022_BioenergyMissouriRiverBasin.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.322711?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Duncan Graham-Rowe, 2011. "Agriculture: Beyond food versus fuel," Nature, Nature, vol. 474(7352), pages 6-8, June.
    2. Dumortier, Jerome & Kauffman, Nathan & Hayes, Dermot J., 2017. "Production and spatial distribution of switchgrass and miscanthus in the United States under uncertainty and sunk cost," Energy Economics, Elsevier, vol. 67(C), pages 300-314.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adkins, Roger & Paxson, Dean, 2019. "Rescaling-contraction with a lower cost technology when revenue declines," European Journal of Operational Research, Elsevier, vol. 277(2), pages 574-586.
    2. Sharma, Bijay P. & Khanna, Madhu & Miao, Ruiqing, 2022. "Designing Efficient Payments to Incentivize GHG Mitigation Using Energy Crops," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322361, Agricultural and Applied Economics Association.
    3. Burli, Pralhad & Lal, Pankaj & Wolde, Bernabas & Jose, Shibu & Bardhan, Sougata, 2019. "Factors affecting willingness to cultivate switchgrass: Evidence from a farmer survey in Missouri," Energy Economics, Elsevier, vol. 80(C), pages 20-29.
    4. Ewelina Olba-Zięty & Mariusz Jerzy Stolarski & Michał Krzyżaniak, 2021. "Economic Evaluation of the Production of Perennial Crops for Energy Purposes—A Review," Energies, MDPI, vol. 14(21), pages 1-16, November.
    5. Nanda, Sonil & Azargohar, Ramin & Dalai, Ajay K. & Kozinski, Janusz A., 2015. "An assessment on the sustainability of lignocellulosic biomass for biorefining," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 925-941.
    6. Dumortier, Jerome & Elobeid, Amani & Carriquiry, Miguel, 2022. "Light-duty vehicle fleet electrification in the United States and its effects on global agricultural markets," Ecological Economics, Elsevier, vol. 200(C).
    7. Francesca Valenti & Attilio Toscano, 2021. "A GIS-Based Model to Assess the Potential of Wastewater Treatment Plants for Enhancing Bioenergy Production within the Context of the Water–Energy Nexus," Energies, MDPI, vol. 14(10), pages 1-15, May.
    8. Kinga Borek & Wacław Romaniuk & Kamil Roman & Michał Roman & Maciej Kuboń, 2021. "The Analysis of a Prototype Installation for Biogas Production from Chosen Agricultural Substrates," Energies, MDPI, vol. 14(8), pages 1-19, April.
    9. Erling Holden & Geoffrey Gilpin, 2013. "Biofuels and Sustainable Transport: A Conceptual Discussion," Sustainability, MDPI, vol. 5(7), pages 1-21, July.
    10. Oludunsin Arodudu & Katharina Helming & Hubert Wiggering & Alexey Voinov, 2016. "Bioenergy from Low-Intensity Agricultural Systems: An Energy Efficiency Analysis," Energies, MDPI, vol. 10(1), pages 1-18, December.
    11. Majeed, Fahd & Khanna, Madhu & Miao, Ruiqing & Blanc, Elena & Hudiburg, Tara & DeLucia, Evan, 2020. "Designing payments for GHG mitigation to induce low carbon bioenergy production," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304394, Agricultural and Applied Economics Association.
    12. Leandro Gomes & Jorge Costa & Joana Moreira & Berta Cumbane & Marcelo Abias & Fernando Santos & Federica Zanetti & Andrea Monti & Ana Luisa Fernando, 2022. "Switchgrass and Giant Reed Energy Potential when Cultivated in Heavy Metals Contaminated Soils," Energies, MDPI, vol. 15(15), pages 1-28, July.
    13. Stephanie Taboada & Lori Clark & Jake Lindberg & David J. Tonjes & Devinder Mahajan, 2021. "Quantifying the Potential of Renewable Natural Gas to Support a Reformed Energy Landscape: Estimates for New York State," Energies, MDPI, vol. 14(13), pages 1-17, June.
    14. Jerome Dumortier & Amani Elobeid, 2020. "Assessment of Carbon Tax Policies: Implications on U.S. Agricultural Production and Farm Income," Center for Agricultural and Rural Development (CARD) Publications 20-wp606, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    15. Philippsen, Aaron & Wild, Peter & Rowe, Andrew, 2014. "Energy input, carbon intensity and cost for ethanol produced from farmed seaweed," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 609-623.
    16. Madhu Khanna & Ruiqing Miao, 2022. "Inducing the adoption of emerging technologies for sustainable intensification of food and renewable energy production: insights from applied economics," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(1), pages 1-23, January.
    17. Jiahong Yuan & Xiaoyu Li & Zilai Sun & Junhu Ruan, 2021. "Will the Adoption of Early Fertigation Techniques Hinder Famers’ Technology Renewal? Evidence from Fresh Growers in Shaanxi, China," Agriculture, MDPI, vol. 11(10), pages 1-17, September.
    18. Douvartzides, Savvas & Charisiou, Nikolaos D. & Wang, Wen & Papadakis, Vagelis G. & Polychronopoulou, Kyriaki & Goula, Maria A., 2022. "Catalytic fast pyrolysis of agricultural residues and dedicated energy crops for the production of high energy density transportation biofuels. Part I: Chemical pathways and bio-oil upgrading," Renewable Energy, Elsevier, vol. 185(C), pages 483-505.
    19. Chris B. Zou & Lixia H. Lambert & Josh Everett & Rodney E. Will, 2022. "Response of Surface Runoff and Sediment to the Conversion of a Marginal Grassland to a Switchgrass ( Panicum virgatum ) Bioenergy Feedstock System," Land, MDPI, vol. 11(4), pages 1-15, April.
    20. Scaife, Mark A. & Merkx-Jacques, Alexandra & Woodhall, David L. & Armenta, Roberto E., 2015. "Algal biofuels in Canada: Status and potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 620-642.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:jasfmr:322711. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/asfmrea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.