IDEAS home Printed from https://ideas.repec.org/a/ags/ccsesa/230403.html
   My bibliography  Save this article

Deficit Irrigation of Durum Wheat (Triticum durum Desf): Effects on Total Dry Matter Production, Light Interception and Radiation Use Efficiency Under Different Nitrogen Rates

Author

Listed:
  • M'hamed, Hatem Cheikh
  • Rezig, Mourad
  • Naceur, Mbarek Ben

Abstract

On-farm trial was conducted from 2005 to 2008 to test the hypothesis that reduction of total dry matter (TDM) in crops can occur after a decreased radiation use efficiency (RUE) due to shortage of nitrogen and irrigation, we applied three irrigations treatments (D1, D2 and D3) and four nitrogen rates (N1, N2, N3 and N4). Photosynthetic active radiation absorbed or cumulative light interception (PARabs) and RUE of Durum wheat were measured. Results showed that D1N1 treatment recorded the highest LAI, PARabs, TDM and RUE. The maximum LAI was obtained 140 DAS (days after sowing) under treatment D1N2 (6.42) and the lowest LAI at the same phase belonged to treatment D2N4 (3.86). At the harvest, the maximum of TDM was 1487 g m-2 recorded under treatment D1N1. The minimum value obtained was 930 g m-2 under treatment D3N4. Also, PARabs was improved under D1N1 and D1N2 treatments. With reduced N application rates and irrigation doses, PARabs was decreased and the lowest values were observed under D3N4 condition. The RUE, varied from 1.55 g MJ-1 (D1N1) to 1.24 g MJ-1 (D3N4), was affected and decreased under deficit irrigation and low nitrogen conditions. In conclusion, the results of this study seem to show that D1N1 and D1N2 treatments can be beneficial for Durum wheat under field conditions in semi arid zone of Tunisia, for the purpose of improving RUE and maximizing grain yield.

Suggested Citation

  • M'hamed, Hatem Cheikh & Rezig, Mourad & Naceur, Mbarek Ben, 2014. "Deficit Irrigation of Durum Wheat (Triticum durum Desf): Effects on Total Dry Matter Production, Light Interception and Radiation Use Efficiency Under Different Nitrogen Rates," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 4(1).
  • Handle: RePEc:ags:ccsesa:230403
    DOI: 10.22004/ag.econ.230403
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/230403/files/p26_26-40_.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.230403?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Oweis, T. Y. & Hachum, A. Y., 2003. "Improving water productivity in the dry areas of West Asia and North Africa," IWMI Books, Reports H032642, International Water Management Institute.
    2. Kijne, Jacob W. & Barker, Randolph & Molden, David J. (ed.), 2003. "Water productivity in agriculture: limits and opportunities for improvement," IWMI Books, International Water Management Institute, number 138054.
    3. Kijne, J. W. & Barker, R. & Molden. D., 2003. "Water productivity in agriculture: limits and opportunities for improvement," IWMI Books, Reports H032631, International Water Management Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mourad Rezig & Hatem Cheikh M'hamed & Mbarek Ben Naceur, 2015. "Does Deficit Irrigation Affect the Relation between Radiation Interception and Water Consumption for Durum Wheat (Triticum durum Desf)?," Energy and Environment Research, Canadian Center of Science and Education, vol. 5(2), pages 1-36, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    2. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    3. Mohamed Kharrou & Michel Le Page & Ahmed Chehbouni & Vincent Simonneaux & Salah Er-Raki & Lionel Jarlan & Lahcen Ouzine & Said Khabba & Ghani Chehbouni, 2013. "Assessment of Equity and Adequacy of Water Delivery in Irrigation Systems Using Remote Sensing-Based Indicators in Semi-Arid Region, Morocco," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4697-4714, October.
    4. Araya, A. & Gowda, P.H. & Golden, B. & Foster, A.J. & Aguilar, J. & Currie, R. & Ciampitti, I.A. & Prasad, P.V.V., 2019. "Economic value and water productivity of major irrigated crops in the Ogallala aquifer region," Agricultural Water Management, Elsevier, vol. 214(C), pages 55-63.
    5. Molden, David & Oweis, T. Y. & Pasquale, S. & Kijne, Jacob W. & Hanjra, M. A. & Bindraban, P. S. & Bouman, Bas A. M. & Cook, S. & Erenstein, O. & Farahani, H. & Hachum, A. & Hoogeveen, J. & Mahoo, Hen, 2007. "Pathways for increasing agricultural water productivity," Book Chapters,, International Water Management Institute.
    6. Amarasinghe, Upali A. & Sharma, Bharat R., 2009. "Water productivity of food grains in India: exploring potential improvements," IWMI Books, Reports H042635, International Water Management Institute.
    7. Tellioglu, Isin & Konandreas, Panos, 2017. "Agricultural Policies, Trade and Sustainable Development in Egypt," National Policies, Trade and Sustainable Development 320158, International Centre for Trade and Sustainable Development (ICTSD).
    8. Molden, David & Oweis, Theib & Steduto, Pasquale & Bindraban, Prem & Hanjra, Munir A. & Kijne, Jacob, 2010. "Improving agricultural water productivity: Between optimism and caution," Agricultural Water Management, Elsevier, vol. 97(4), pages 528-535, April.
    9. Amarasinghe, Upali A. & Sharma, Bharat R., 2009. "Water productivity of food grains in India: exploring potential improvements," Book Chapters,, International Water Management Institute.
    10. Assefa, Shibeshi & Biazin, Birhanu & Muluneh, Alemayehu & Yimer, Fantaw & Haileslassie, Amare, 2016. "Rainwater harvesting for supplemental irrigation of onions in the southern dry lands of Ethiopia," Agricultural Water Management, Elsevier, vol. 178(C), pages 325-334.
    11. Metin Sezen, S. & Yazar, Attila, 2006. "Wheat yield response to line-source sprinkler irrigation in the arid Southeast Anatolia region of Turkey," Agricultural Water Management, Elsevier, vol. 81(1-2), pages 59-76, March.
    12. Oweis, Theib & Hachum, Ahmed, 2006. "Water harvesting and supplemental irrigation for improved water productivity of dry farming systems in West Asia and North Africa," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 57-73, February.
    13. Pathak, P. & Sahrawat, K. L. & Wani, S. P. & Sachan, R. C. & Sudi, R., 2009. "Opportunities for water harvesting and supplemental irrigation for improving rainfed agriculture in semi-arid areas," IWMI Books, Reports H042000, International Water Management Institute.
    14. Cook, Simon, 2006. "Water productivity: measuring and mapping in benchmark basins. Estimation at plot, farm and basin scale," IWMI Working Papers H039742, International Water Management Institute.
    15. Giordano, Meredith & Turral, H. & Scheierling, S. M. & Treguer, D. O. & McCornick, Peter G, 2017. "Beyond “More Crop per Drop”: evolving thinking on agricultural water productivity," IWMI Research Reports 257962, International Water Management Institute.
    16. Bouman, B. A.M., 2007. "A conceptual framework for the improvement of crop water productivity at different spatial scales," Agricultural Systems, Elsevier, vol. 93(1-3), pages 43-60, March.
    17. Abdul Latief A. Al-Ghzawi & Yahya Bani Khalaf & Zakaria I. Al-Ajlouni & Nisreen A. AL-Quraan & Iyad Musallam & Nabeel Bani Hani, 2018. "The Effect of Supplemental Irrigation on Canopy Temperature Depression, Chlorophyll Content, and Water Use Efficiency in Three Wheat ( Triticum aestivum L. and T. durum Desf.) Varieties Grown in Dry R," Agriculture, MDPI, vol. 8(5), pages 1-23, May.
    18. Oweis, Theib & Hachum, Ahmed, 2009. "Optimizing supplemental irrigation: Tradeoffs between profitability and sustainability," Agricultural Water Management, Elsevier, vol. 96(3), pages 511-516, March.
    19. Pereira, Luis S. & Cordery, Ian & Iacovides, Iacovos, 2012. "Improved indicators of water use performance and productivity for sustainable water conservation and saving," Agricultural Water Management, Elsevier, vol. 108(C), pages 39-51.
    20. Upali A. Amarasinghe & R.P. S. Malik & Bharat R. Sharma, 2010. "Overcoming growing water scarcity: Exploring potential improvements in water productivity in India," Natural Resources Forum, Blackwell Publishing, vol. 34(3), pages 188-199, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:ccsesa:230403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: http://www.ccsenet.org/sar .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.