IDEAS home Printed from https://ideas.repec.org/a/wly/jjmath/v2025y2025i1n2291842.html

A Pair of Generalized (α, α)‐Derivations With Identities Related to Prime Ideals

Author

Listed:
  • Ali Yahya Hummdi
  • Hafedh Alnoghashi
  • Radwan Mohammed Al-Omary
  • Abdelkarim Boua

Abstract

Let A be an arbitrary ring, α an automorphism of A, I a nonzero ideal of A, and ϒ a prime ideal of A satisfying the condition ϒ⊊αI. This research investigates the interplay between two generalized (α, α)‐derivations, Ω and G (associated with (α, α)‐derivations f and h, respectively), and the resulting characteristics of the quotient ring A/ϒ. A key aspect of this work is that no primality or semiprimality conditions are imposed on the ring A. The analysis proceeds by examining specific differential identities satisfied by these derivations on the ideal I in relation to the prime ideal ϒ. Furthermore, this article discusses implications derived from the main theorems and presents nontrivial examples to underscore the necessity of the primeness hypothesis for ϒ in our results.

Suggested Citation

Handle: RePEc:wly:jjmath:v:2025:y:2025:i:1:n:2291842
DOI: 10.1155/jom/2291842
as

Download full text from publisher

File URL: https://doi.org/10.1155/jom/2291842
Download Restriction: no

File URL: https://libkey.io/10.1155/jom/2291842?utm_source=ideas
LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jjmath:v:2025:y:2025:i:1:n:2291842. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://onlinelibrary.wiley.com/journal/1469 .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.