IDEAS home Printed from https://ideas.repec.org/a/dbk/rlatia/v2y2024ip331id1062486latia2025331.html
   My bibliography  Save this article

Machine learning and AI for security mechanisms: A Systematic Literature Review Using a PRISMA Framework

Author

Listed:
  • Hockings Mambwe
  • Petros Chavula
  • Fredrick Kayusi
  • Gilbert Lungu
  • Agnes Uwimbabazi

Abstract

Cyber threats are evolving rapidly, posing significant risks to individuals, organizations, and digital infrastructure. Traditional cybersecurity measures, which rely on predefined rules and static defence mechanisms, struggle to counter emerging threats such as zero-day attacks and advanced persistent threats (APTs). The integration of artificial intelligence (AI) and machine learning (ML) into cybersecurity presents a transformative approach, enhancing threat detection, anomaly identification, and automated response mechanisms. This study systematically reviews the role of ML and AI in cybersecurity defence using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework. A comprehensive literature search was conducted across multiple academic databases, identifying and analyzing studies published within the last decade. The review focuses on AI-driven cybersecurity applications, including intrusion detection systems (IDS), malware analysis, and anomaly detection in cloud and IoT environments. Findings indicate that ML models, such as neural networks, support vector machines, and ensemble learning techniques, improve detection accuracy and adaptability to evolving threats. AI-driven automated response systems enhance incident mitigation, reducing reliance on human intervention. However, challenges such as adversarial attacks, data privacy concerns, and computational resource demands persist. The study concludes that AI and ML significantly enhance cybersecurity resilience but require continuous advancements in model robustness, interpretability, and ethical considerations. Future research should focus on refining AI-driven security mechanisms, addressing adversarial vulnerabilities, and improving regulatory frameworks to maximize AI’s potential in cybersecurity.

Suggested Citation

Handle: RePEc:dbk:rlatia:v:2:y:2024:i::p:331:id:1062486latia2025331
DOI: 10.62486/latia2025331
as

Download full text from publisher

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a
for a similarly titled item that would be available.

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dbk:rlatia:v:2:y:2024:i::p:331:id:1062486latia2025331. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Javier Gonzalez-Argote (email available below). General contact details of provider: https://latia.ageditor.uy/ .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.