IDEAS home Printed from https://ideas.repec.org/a/dbk/medicw/v3y2024ip513id513.html
   My bibliography  Save this article

Integrating Natural Language Processing in Medical Information Science for Clinical Text Analysis

Author

Listed:
  • Dharmsheel Shrivastava
  • Malathi.H Malathi.H
  • Swarna Swetha Kolaventi
  • Bichitrananda Patra
  • Nyalam Ramu
  • Divya Sharma
  • Shubhansh Bansal

Abstract

The rapid digitization of healthcare data has led to an exponential increase in unstructured clinical text, necessitating the integration of Natural Language Processing (NLP) in Medical Information Science. This research explores deep learning-based NLP techniques for clinical text analysis, focusing on Named Entity Recognition (NER), disease classification, adverse drug reaction detection, and clinical text summarization. The study leverages state-of-the-art transformer models such as BioBERT, ClinicalBERT, and GPT-4 Medical, which demonstrate superior performance in extracting key medical entities, classifying diseases, and summarizing electronic health records (EHRs). Experimental results on benchmark datasets such as MIMIC-III, i2b2, and ClinicalTrials.gov show that ClinicalBERT outperforms traditional ML models by achieving an F1-score of 89.9% in NER tasks, while GPT-4 Medical improves EHR summarization efficiency by 40%. By means of automated medical documentation, clinical decision support, and real-time adverse drug event detection which integrates NLP into healthcare systems diagnostic accuracy, physician efficiency, and patient safety are much improved. NLP-driven medical text analysis has great potential to transform clinical procedures and raise patient outcomes despite obstacles like computing costs, data privacy issues, and model interpretability. Improving domain-specific AI models, maximising real-time processing, and guaranteeing ethical AI deployment in healthcare should be the key priorities of next studies.

Suggested Citation

Handle: RePEc:dbk:medicw:v:3:y:2024:i::p:513:id:513
DOI: 10.56294/mw2024513
as

Download full text from publisher

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a
for a similarly titled item that would be available.

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dbk:medicw:v:3:y:2024:i::p:513:id:513. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Javier Gonzalez-Argote (email available below). General contact details of provider: https://mw.ageditor.ar/ .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.