IDEAS home Printed from https://ideas.repec.org/a/dbk/evitro/2024v3a23.html
   My bibliography  Save this article

Application of simulation tools to HAZOP analysis of exothermic reaction processes

Author

Listed:
  • Oswaldo A. Azuaje G
  • Andrés Rosales
  • Francisco Da Silva

Abstract

Introduction: The article addressed the integration between process simulation and HAZOP studies as a tool for risk analysis in the chemical industry. It was identified that, despite the effectiveness of traditional HAZOP, its qualitative nature and dependence on expert judgment limited its scope in complex systems. In response, it was proposed to review the use of simulation - in steady state and dynamic - as a support to improve the identification and evaluation of deviations in industrial processes, especially in CSTR type reactors. Development: The principles of chemical process simulation and its application using tools such as Aspen HYSYS were described. The advantages of mathematical modeling for predicting the behavior of a system in the face of disturbances were analyzed. In particular, a case of propylene glycol production in a CSTR reactor was studied, highlighting the influence of parameters such as temperature, reactant flow and unstable operating zones. Key concepts of the HAZOP study, the LOPA methodology and the design of protection layers were reviewed and linked to data obtained from detailed simulations. Visual tools such as bifurcation diagrams and operational windows were exemplified. Conclusions: The review evidenced that the use of simulation strengthens risk analyses by complementing the HAZOP approach with quantitative data. This combination improved the accuracy of the analysis, reduced the study execution time and increased the reliability of the results. It was concluded that the integration of advanced simulators represents a key trend in the evolution towards more digitized and efficient risk management.

Suggested Citation

Handle: RePEc:dbk:evitro:2024v3a23
DOI: 10.56294/evk2024102
as

Download full text from publisher

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a
for a similarly titled item that would be available.

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dbk:evitro:2024v3a23. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Javier Gonzalez-Argote (email available below). General contact details of provider: https://evk.ageditor.ar/ .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.