Author
Listed:
- Anber AbraheemShlash Mohammad
- Ammar Mohammad Al-Ramadan
- Suleiman Ibrahim Mohammad
- Badrea Al Oraini
- Asokan Vasudevan
- Nawaf Alshdaifat
- Mohammad Faleh Ahmmad Hunitie
Abstract
Introduction: customer sentiment analysis is a vital tool for understanding consumer preferences and enhancing service quality in the food and beverage industry. Online reviews significantly influence customer decisions, making it essential for businesses to analyze sentiment trends and manage their digital reputation effectively. This study examines customer sentiment across different establishment types and digital platforms in Jordan, providing insights into sentiment patterns and their strategic implications. Method: a dataset of 384 customer reviews from various restaurants and hotels was analyzed using a rule-based sentiment classification approach. Sentiments were categorized as positive, neutral, or negative. To assess sentiment variations, an ANOVA test was conducted to compare establishment types, and a Chi-Square test was performed to examine differences across digital platforms. Results: findings indicate that luxury hotels and fine dining establishments receive more positive sentiment, while budget hotels and fast food chains experience higher negative sentiment. However, the ANOVA test showed no statistically significant sentiment differences across establishment types, suggesting that all businesses receive a mix of sentiment categories. The Chi-Square test confirmed significant sentiment differences across platforms, with TripAdvisor attracting the most positive reviews, Facebook and Google Reviews showing balanced sentiment, and Twitter experiencing the highest negative sentiment. Conclusion: these findings emphasize the importance of platform-specific digital reputation management. Businesses should strategically engage with customers on different platforms, address complaints proactively, and utilize AI-driven sentiment analysis tools to improve customer satisfaction. Future research should explore AI-based predictive analytics and sentiment monitoring for enhancing service quality in the hospitality industry.
Suggested Citation
Handle:
RePEc:dbk:datame:v:4:y:2025:i::p:922:id:1056294dm2025922
DOI: 10.56294/dm2025922
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dbk:datame:v:4:y:2025:i::p:922:id:1056294dm2025922. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Javier Gonzalez-Argote (email available below). General contact details of provider: https://dm.ageditor.ar/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.