Author
Listed:
- Haneen A. Al-khawaja
- Abdul Razzak Alshehadeh
- Asad Aburub Faisal
- Ali Matar
- Osaid Hasan Althnaibat
Abstract
Insider trading and regulatory inconsistencies have important historical challenges to the integrity and stability of global financial markets. These issues challenge trust, transparency, and fairness are requiring solutions. In this study, we introduce a novel artificial intelligence (AI)-driven system that carefully addressing these challenges. The proposed system employs machine learning models for insider trading detection, natural language processing (NLP) for sentiment analysis, and graph neural networks (GNNs) to detect irregular patterns in blockchain transactions. Moreover, reinforcement learning techniques are utilized here to complement regulatory standards dynamically, enhancing policy flexibility and market agreement. Explainable AI (XAI) were used here as well to ensure the transparency and trust in decision-making processes, this helps stakeholders to take actions. Experimental evaluations prove the system efficiency, with promising precision and recall percentages, enhanced governance in decentralized systems, and robust cross-jurisdictional regulatory alignment. This research contributes to knowledge by proving the transformative prospective of AI in strengthening regulatory frameworks and improving governance mechanisms in financial systems. The achievements here provide a roadmap for policymakers, financial institutions, and technology developers to build reasonable, efficient, and resistant markets. El tráfico de información privilegiada y las inconsistencias regulatorias han sido desafíos históricos importantes para la integridad y estabilidad de los mercados financieros globales. Estos problemas desafían la confianza, la transparencia y la equidad y requieren soluciones. En este estudio, presentamos un nuevo sistema impulsado por inteligencia artificial (IA) que aborda cuidadosamente estos desafíos. El sistema propuesto emplea modelos de aprendizaje automático para la detección de tráfico de información privilegiada, procesamiento del lenguaje natural (NLP) para el análisis de sentimientos y redes neuronales gráficas (GNN) para detectar patrones irregulares en transacciones de blockchain. Además, aquí se utilizan técnicas de aprendizaje de refuerzo para complementar los estándares regulatorios de forma dinámica, mejorando la flexibilidad de las políticas y el acuerdo del mercado. Aquí también se utilizó IA explicable (XAI) para garantizar la transparencia y la confianza en los procesos de toma de decisiones, lo que ayuda a las partes interesadas a tomar medidas. Las evaluaciones experimentales prueban la eficiencia del sistema, con porcentajes prometedores de precisión y recuperación, una gobernanza mejorada en sistemas descentralizados y una sólida alineación regulatoria interjurisdiccional. Esta investigación contribuye al conocimiento al demostrar la perspectiva transformadora de la IA en el fortalecimiento de los marcos regulatorios y la mejora de los mecanismos de gobernanza en los sistemas financieros. Los logros aquí alcanzados proporcionan una hoja de ruta para que los responsables de las políticas, las instituciones financieras y los desarrolladores de tecnología construyan mercados razonables, eficientes y resistentes.
Suggested Citation
Handle:
RePEc:dbk:datame:v:4:y:2025:i::p:680:id:1056294dm2025680
DOI: 10.56294/dm2025680
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dbk:datame:v:4:y:2025:i::p:680:id:1056294dm2025680. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Javier Gonzalez-Argote (email available below). General contact details of provider: https://dm.ageditor.ar/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.