IDEAS home Printed from https://ideas.repec.org/a/dbk/datame/v4y2025ip221id1056294dm2025221.html
   My bibliography  Save this article

Influence of Attitude toward Artificial Intelligence (AI) on Job Performance with AI in Nurses

Author

Listed:
  • Wilter C. Morales-García
  • Liset Z. Sairitupa-Sanchez
  • Alcides Flores-Paredes
  • Mardel Morales-García
  • Fernando N. Gutierrez-Caballero

Abstract

AI has revolutionized the workplace, significantly impacting the nursing profession. Attitudes toward AI, defined as workers’ perceptions and beliefs about its utility and effectiveness, are critical for its adoption and efficient use in clinical settings. Factors such as age, marital status, and education level may influence this relationship, affecting job performance. This study examines the influence of attitude toward AI on job performance with AI among Peruvian nurses, while also assessing how sociodemographic characteristics moderate this relationship. A descriptive cross-sectional design was used with a sample of 249 Peruvian nurses aged 24 to 53 years (M = 35.58, SD = 8.3). Data were collected using two validated scales: the Brief Artificial Intelligence Job Performance Scale (BAIJPS) and the Attitude toward Artificial Intelligence Scale (AIAS-4). Descriptive statistics, Pearson correlations, and multiple linear regression were applied. A significant positive correlation was found between attitude toward AI and job performance with AI (r = 0.43, p

Suggested Citation

Handle: RePEc:dbk:datame:v:4:y:2025:i::p:221:id:1056294dm2025221
DOI: 10.56294/dm2025221
as

Download full text from publisher

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a
for a similarly titled item that would be available.

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dbk:datame:v:4:y:2025:i::p:221:id:1056294dm2025221. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Javier Gonzalez-Argote (email available below). General contact details of provider: https://dm.ageditor.ar/ .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.