IDEAS home Printed from https://ideas.repec.org/a/dbk/datame/v3y2024ip408id1056294dm2024408.html
   My bibliography  Save this article

Enhanced Brain Tumor Segmentation and Size Estimation in MRI Samples using Hybrid Optimization

Author

Listed:
  • Ayesha Agrawal
  • Vinod Maan

Abstract

The area of medical imaging specialization, specifically in the context of brain tumor segmentation, has long been challenged by the inherent complexity and variability of brain structures. Traditional segmentation methods often struggle to accurately differentiate between the diverse types of tissues within the brain, such as white matter, grey matter, and cerebrospinal fluid, leading to suboptimal results in tumor identification and delineation. These limitations necessitate the development of more advanced and precise segmentation techniques to enhance diagnostic accuracy and treatment planning. In response to these challenges, the proposed study introduces a novel segmentation approach that combines the Grey Wolf Optimization approach and the Cuckoo Search approach within a Fuzzy C-Means (FCM) framework. The integration of GWO and CS is designed to leverage their respective strengths in optimizing the segmentation of brain tissues. This hybrid approach was rigorously tested across multiple Magnetic Resonance Imaging (MRI) datasets, demonstrating significant enhancements over existing segmentation methods. The study observed a 4,9 % improvement in accuracy, 3,5 % increase in precision, 4,5 % higher recall, 3,2 % less delay, and 2,5 % better specificity in tumor segmentation. The implications of these advancements are profound. By achieving higher precision and accuracy in brain tumor segmentation, the proposed method can substantially aid in early diagnosis and accurate staging of brain tumors, eventually leading to more effective treatment planning and improved patient outcomes. Furthermore, the integration of GWO and CS within the FCM process sets a new benchmark in medical imaging, paving the way for future investigation in the field of study

Suggested Citation

Handle: RePEc:dbk:datame:v:3:y:2024:i::p:408:id:1056294dm2024408
DOI: 10.56294/dm2024408
as

Download full text from publisher

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a
for a similarly titled item that would be available.

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dbk:datame:v:3:y:2024:i::p:408:id:1056294dm2024408. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Javier Gonzalez-Argote (email available below). General contact details of provider: https://dm.ageditor.ar/ .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.