Author
Listed:
- Patakamudi Swathi
- Dara Sai Tejaswi
- Mohammad Amanulla Khan
- Miriyala Saishree
- Venu Babu Rachapudi
- Dinesh Kumar Anguraj
Abstract
Vehicle detection is an essential technology for intelligent transportation systems and autonomous vehicles. Reliable real-time detection allows for traffic monitoring, safety enhancements and navigation aids. However, vehicle detection is a challenging computer vision task, especially in complex urban settings. Traditional methods using hand-crafted features like HAAR cascades have limitations. Recent deep learning advances have enabled convolutional neural networks (CNNs) like Faster R-CNN, SSD and YOLO to be applied to vehicle detection with significantly improved accuracy. But each technique has tradeoffs between precision and processing speed. Two-stage detectors like Faster R-CNN are highly accurate but slow at 7 FPS. Single-shot detectors like SSD are faster at 22 FPS but less precise. YOLO is extremely fast at 45 FPS but has lower accuracy. This paper reviews prominent deep learning vehicle detectors. It proposes a new integrated method combining YOLOv3 detection, optical flow tracking and trajectory analysis to enhance both accuracy and speed. Results on highway and urban datasets show improved precision, recall and F1 scores compared to YOLOv3 alone. Optical flow helps filter noise and recover missed detections. Trajectory analysis enables consistent object IDs across frames. Compared to other CNN models, the proposed technique achieves a better balance of real-time performance and accuracy. Occlusion handling and small object detection remain open challenges. In summary, deep learning has enabled major progress but enhancements in model architecture, training data and occlusion handling are needed to realize the full potential for traffic management applications. The integrated method proposed offers improved performance over baseline detectors. We have achieved 99 % accuracy in our project
Suggested Citation
Handle:
RePEc:dbk:datame:v:3:y:2024:i::p:295:id:1056294dm2024295
DOI: 10.56294/dm2024295
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dbk:datame:v:3:y:2024:i::p:295:id:1056294dm2024295. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Javier Gonzalez-Argote (email available below). General contact details of provider: https://dm.ageditor.ar/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.