Author
Listed:
- G. Meenalochini
- D. Amutha Guka
- Ramkumar Sivasakthivel
- Manikandan Rajagopal
Abstract
According to recent research, it is studied that the second most common cause of death for women worldwide is breast cancer. Since it can be incredibly difficult to determine the true cause of breast cancer, early diagnosis is crucial to lowering the disease's fatality rate. Early cancer detection raises the chance of survival by up to 8 %. Radiologists look for irregularities in breast images collected from mammograms, X-rays, or MRI scans. Radiologists of all levels struggle to identify features like lumps, masses, and micro-calcifications, which leads to high false-positive and false-negative rates. Recent developments in deep learning and image processing give rise to some optimism for the creation of improved applications for the early diagnosis of breast cancer. A methodological study was carried out in which a new Deep U-Net Segmentation based Convolutional Neural Network, named UNDML framework is developed for identifying and categorizing breast anomalies. This framework involves the operations of preprocessing, quality enhancement, feature extraction, segmentation, and classification. Preprocessing is carried out in this case to enhance the quality of the breast picture input. Consequently, the Deep U-net segmentation methodology is applied to accurately segment the breast image for improving the cancer detection rate. Finally, the CNN mechanism is utilized to categorize the class of breast cancer. To validate the performance of this method, an extensive simulation and comparative analysis have been performed in this work. The obtained results demonstrate that the UNDML mechanism outperforms the other models with increased tumor detection rate and accuracy
Suggested Citation
G. Meenalochini & D. Amutha Guka & Ramkumar Sivasakthivel & Manikandan Rajagopal, 2024.
"A Progressive UNDML Framework Model for Breast Cancer Diagnosis and Classification,"
Data and Metadata, AG Editor, vol. 3, pages 198-198.
Handle:
RePEc:dbk:datame:v:3:y:2024:i::p:198:id:1056294dm2024198
DOI: 10.56294/dm2024198
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dbk:datame:v:3:y:2024:i::p:198:id:1056294dm2024198. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Javier Gonzalez-Argote (email available below). General contact details of provider: https://dm.ageditor.ar/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.