IDEAS home Printed from https://ideas.repec.org/a/dbk/datame/v2y2023ip181id1056294dm2023181.html
   My bibliography  Save this article

Classification of diseases in tomato leaves with Deep Transfer Learning

Author

Listed:
  • Noredine Hajraoui
  • Mourade Azrour
  • Ahmad El Allaoui

Abstract

Plant diseases are important factors because they significantly affect the quality, quantity, and yield of agricultural products. Therefore, it is important to detect and diagnose these diseases at an early stage. The overall objective of this study is to develop an acceptable deep learning model to correctly classify diseases on tomato leaves in RGB color images. To address this challenge, we use a new approach based on combining two deep learning models VGG16 and ResNet152v2 with transfer learning. The image dataset contains 55 000 images of tomato leaves in 5 different classes, 4 diseases and one healthy class. The results of our experiment are promising and encouraging, showing that the proposed model achieves 99,08 % accuracy in training, 97,66 % in validation, and 99,0234 % in testing

Suggested Citation

Handle: RePEc:dbk:datame:v:2:y:2023:i::p:181:id:1056294dm2023181
DOI: 10.56294/dm2023181
as

Download full text from publisher

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a
for a similarly titled item that would be available.

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dbk:datame:v:2:y:2023:i::p:181:id:1056294dm2023181. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Javier Gonzalez-Argote (email available below). General contact details of provider: https://dm.ageditor.ar/ .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.