IDEAS home Printed from https://ideas.repec.org/a/dbk/datame/v2y2023ip176id1056294dm2023176.html
   My bibliography  Save this article

Toward Innovative Recognition of Handwritten Arabic Characters: A Hybrid Approach with SIFT, BoVW, and SVM classification

Author

Listed:
  • Othmane Farhaoui
  • Mohamed Rida Fethi
  • Imad Zeroual
  • Ahmad El Allaoui

Abstract

The goal of handwriting recognition has been a top priority for those who want to enter data into computer systems for more than thirty years. In several fields, the advent of handwriting recognition technology is highly anticipated. OCR technology has made it possible for computers to recognize characters as visual objects and collect data about their unique characteristics in recent years. In particular, several studies in this field have focused on Arabic writing. The use of machines to examine handwritten papers is the first step in the character identification process. The identification of specific Arabic characters is the main goal of this particular investigation. In computer vision, Arabic character recognition is very important since it's necessary to correctly recognize and classify Arabic letters and characters in manuscripts. In this research, an innovative approach based on identifying Arabic character characteristics using BoVW (bag of visual words) and SIFT (Scale Invariant Feature Transform) features is proposed. These features are clustered using k-means clustering to produce a dictionary. Following that, SVM (Support Vector Machine) is utilized to classify the word images in a visual codebook created using these terms. The proposed approach is an innovative method to deal with the difficulties associated with Arabic hand-writing recognition. The utilization of BoVW and SIFT features is expected to enhance the system's robustness in recognizing and classifying Arabic characters. The proposed approach will be experimentally evaluated using a dataset that includes a variety of Arabic characters written in various styles. The results of this study will offer important new perspectives on the effectiveness and practicality of the approach suggested

Suggested Citation

Handle: RePEc:dbk:datame:v:2:y:2023:i::p:176:id:1056294dm2023176
DOI: 10.56294/dm2023176
as

Download full text from publisher

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a
for a similarly titled item that would be available.

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dbk:datame:v:2:y:2023:i::p:176:id:1056294dm2023176. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Javier Gonzalez-Argote (email available below). General contact details of provider: https://dm.ageditor.ar/ .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.