IDEAS home Printed from https://ideas.repec.org/a/dbk/datame/v2y2023ip175id1056294dm2023175.html
   My bibliography  Save this article

Use of Convolutional Neural Networks (CNN) to recognize the quality of oranges in Peru by 2023

Author

Listed:
  • Franklin Moza Villalobos
  • Juan Natividad Villanueva
  • Brian Meneses Claudio

Abstract

Introduction: the agricultural sector in Peru has witnessed a notable increase in the production of oranges, which has promoted the essential use of convolutional neural networks (CNN). The ability to interpret images by visual artificial intelligence has been fundamental for the analysis and processing of these images, especially in the detection and classification of fruits, standing out in the specific case of oranges. Objective: conduct a systematic literature review (RSL) to evaluate the neural networks used in the classification of oranges in Peru. Method: an RSL was carried out using the PICO strategy to search the Scopus database. The selection criteria included studies that used convolutional neural networks to classify the quality status of oranges in the Peruvian context. Results: all the studies reviewed were based on the use of convolutional neural networks (CNN) for fruit classification, using various architectures and techniques. Some studies focused on a single specific fruit, while others addressed the classification of multiple types of fruits, highlighting the importance of the number and variety of images for training the networks. Conclusions: convolutional neural networks show effectiveness in orange classification, but the quality of the images and the variety of data are essential to improve accuracy

Suggested Citation

Handle: RePEc:dbk:datame:v:2:y:2023:i::p:175:id:1056294dm2023175
DOI: 10.56294/dm2023175
as

Download full text from publisher

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a
for a similarly titled item that would be available.

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dbk:datame:v:2:y:2023:i::p:175:id:1056294dm2023175. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Javier Gonzalez-Argote (email available below). General contact details of provider: https://dm.ageditor.ar/ .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.