Author
Listed:
- Mariame Oumoulylte
- Ali Omari Alaoui
- Yousef Farhaoui
- Ahmad El Allaoui
- Abdelkhalak Bahri
Abstract
Skin cancer represents one of the primary forms of cancer arising from various dermatological disorders. It can be further categorized based on morphological characteristics, coloration, structure, and texture. Given the rising incidence of skin cancer, its significant mortality rates, and the substantial costs associated with medical treatment, the imperative lies in early detection to promptly diagnose symptoms and initiate appropriate interventions. Traditionally, skin cancer diagnosis and detection involve manual screening and visual examination conducted by dermatologists. these techniques are complex, error-prone, and time-consuming. Machine learning algorithms, particularly deep learning approaches, have been applied to analyze images of skin lesions, detect potential cancerous growths, and provide predictions regarding the likelihood of malignancy. In this paper, we have developed an optimized deep convolutional neural network (DCNN) specifically tailored for classifying skin lesions into benign and malignant categories. Thereby, enhancing the precision of disease diagnosis. Our study encompassed the utilization of a dataset comprising 3,297 dermoscopic images. To enhance the model's performance, we applied rigorous data preprocessing techniques and softmax activation algorithms. The suggested approach employs multiple optimizers, including Adam, RMSProp, and SGD, all configured with a learning rate of 0.0001. The outcomes of our experiments reveal that the Adam optimizer outperforms the others in distinguishing benign and malignant skin lesions within the ISIC dataset, boasting an accuracy score of 84 %, a loss rate of 32 %, a recall rating of 85 %, a precision score of 85 %, a f1-score of 85 %, and a ROC-AUC of 83 %
Suggested Citation
Mariame Oumoulylte & Ali Omari Alaoui & Yousef Farhaoui & Ahmad El Allaoui & Abdelkhalak Bahri, 2023.
"Convolutional Neural Network-Based Approach For Skin Lesion Classification,"
Data and Metadata, AG Editor, vol. 2, pages 171-171.
Handle:
RePEc:dbk:datame:v:2:y:2023:i::p:171:id:1056294dm2023171
DOI: 10.56294/dm2023171
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dbk:datame:v:2:y:2023:i::p:171:id:1056294dm2023171. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Javier Gonzalez-Argote (email available below). General contact details of provider: https://dm.ageditor.ar/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.