IDEAS home Printed from https://ideas.repec.org/a/dbk/datame/v2y2023ip153id1056294dm2023153.html
   My bibliography  Save this article

Pre-trained CNNs: Evaluating Emergency Vehicle Image Classification

Author

Listed:
  • Ali Omari Alaoui
  • Omaima El Bahi
  • Mohamed Rida Fethi
  • Othmane Farhaoui
  • Ahmad El Allaoui
  • Yousef Farhaoui

Abstract

In this paper, we aim to provide a comprehensive analysis of image classification, specifically in the context of emergency vehicle classification. We have conducted an in-depth investigation, exploring the effectiveness of six pre-trained Convolutional Neural Network (CNN) models. These models, namely VGG19, VGG16, MobileNetV3Large, MobileNetV3Small, MobileNetV2, and MobileNetV1, have been thoroughly examined and evaluated within the domain of emergency vehicle classification. The research methodology utilized in this study is carefully designed with a systematic approach. It includes the thorough preparation of datasets, deliberate modifications to the model architecture, careful selection of layer operations, and fine-tuning of the model compilation. To gain a comprehensive understanding of the performance, we conducted a detailed series of experiments. We analyzed nuanced performance metrics such as accuracy, loss, and training time, considering important factors in the evaluation process. The results obtained from this study provide a comprehensive understanding of the advantages and disadvantages of each model. Moreover, they emphasize the crucial significance of carefully choosing a suitable pre-trained Convolutional Neural Network (CNN) model for image classification tasks. Essentially, this article provides a comprehensive overview of image classification, highlighting the crucial significance of pre-trained CNN models in achieving precise outcomes, especially in the demanding field of emergency vehicle classification

Suggested Citation

Handle: RePEc:dbk:datame:v:2:y:2023:i::p:153:id:1056294dm2023153
DOI: 10.56294/dm2023153
as

Download full text from publisher

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a
for a similarly titled item that would be available.

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dbk:datame:v:2:y:2023:i::p:153:id:1056294dm2023153. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Javier Gonzalez-Argote (email available below). General contact details of provider: https://dm.ageditor.ar/ .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.