IDEAS home Printed from https://ideas.repec.org/a/dbk/datame/v2y2023ip135id1056294dm2023135.html
   My bibliography  Save this article

Disease Detection using Region-Based Convolutional Neural Network and ResNet

Author

Listed:
  • V. Sushma Sri
  • V. Hima Sailu
  • U. Pradeepthi
  • P. Manogyna Sai
  • M. Kavitha

Abstract

In recent times, various techniques have been employed in agriculture to address different aspects. These techniques encompass strategies to enhance crop yield, identify hidden pests, and implement effective pest reduction methods, among others. Presented in this study a novel strategy which focuses on identification of plant leaf infections in agricultural fields using drones. By employing cameras on drones with high resolution, we take precise pictures of plant leaves, ensuring comprehensive coverage of the entire area. These images serve as datasets for Deep Learning algorithms, including Convolutional Neural Networks(CNN), Resnet, ReLu enabling the early detection of infections. The deep learning models leverage the captured images to identify and classify infections at their initial stages. The usage of R-CNN and ResNet technology in agriculture field has brought the tremendous change when we detect the disease in earlier stage of crop. Thus the farmer can take the pest preventive measures in the beginning stage to avoid crop failure

Suggested Citation

Handle: RePEc:dbk:datame:v:2:y:2023:i::p:135:id:1056294dm2023135
DOI: 10.56294/dm2023135
as

Download full text from publisher

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a
for a similarly titled item that would be available.

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dbk:datame:v:2:y:2023:i::p:135:id:1056294dm2023135. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Javier Gonzalez-Argote (email available below). General contact details of provider: https://dm.ageditor.ar/ .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.