IDEAS home Printed from https://ideas.repec.org/r/spr/scient/v70y2007i3d10.1007_s11192-007-0305-3.html
   My bibliography  Save this item

How cross-disciplinary is bionanotechnology? Explorations in the specialty of molecular motors

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Heinze, Thomas & Kuhlmann, Stefan, 2008. "Across institutional boundaries?: Research collaboration in German public sector nanoscience," Research Policy, Elsevier, vol. 37(5), pages 888-899, June.
  2. Ellen Siu, 2018. "Interorganisational collaboration in Academic Health Science Centre: A case study on King’s Health Partnership," Working Papers 40, Birkbeck Centre for Innovation Management Research, revised Feb 2021.
  3. Can Huang & Ad Notten & Nico Rasters, 2011. "Nanoscience and technology publications and patents: a review of social science studies and search strategies," The Journal of Technology Transfer, Springer, vol. 36(2), pages 145-172, April.
  4. Loet Leydesdorff & Inga Ivanova, 2021. "The measurement of “interdisciplinarity” and “synergy” in scientific and extra‐scientific collaborations," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(4), pages 387-402, April.
  5. Shiji Chen & Clément Arsenault & Yves Gingras & Vincent Larivière, 2015. "Exploring the interdisciplinary evolution of a discipline: the case of Biochemistry and Molecular Biology," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(2), pages 1307-1323, February.
  6. Wang, Lili & Notten, Ad, 2011. "Mapping the interdisciplinary nature and co-evolutionary patterns in five nano-industrial sectors," MERIT Working Papers 2011-029, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
  7. Ismael Rafols & Martin Meyer, 2010. "Diversity and network coherence as indicators of interdisciplinarity: case studies in bionanoscience," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(2), pages 263-287, February.
  8. Juan María Hernández & Pablo Dorta-González, 2020. "Interdisciplinarity Metric Based on the Co-Citation Network," Mathematics, MDPI, vol. 8(4), pages 1-8, April.
  9. Ozcan, Sercan & Islam, Nazrul, 2014. "Collaborative networks and technology clusters — The case of nanowire," Technological Forecasting and Social Change, Elsevier, vol. 82(C), pages 115-131.
  10. Meijun Liu & Xiao Hu & Jiang Li, 2018. "Knowledge flow in China’s humanities and social sciences," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(2), pages 607-626, March.
  11. Sándor Soós & George Kampis, 2011. "Towards a typology of research performance diversity: the case of top Hungarian players," Scientometrics, Springer;Akadémiai Kiadó, vol. 87(2), pages 357-371, May.
  12. Qiuju Zhou & Ronald Rousseau & Liying Yang & Ting Yue & Guoliang Yang, 2012. "A general framework for describing diversity within systems and similarity between systems with applications in informetrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(3), pages 787-812, December.
  13. David Roessner & Alan L. Porter & Nancy J. Nersessian & Stephen Carley, 2013. "Validating indicators of interdisciplinarity: linking bibliometric measures to studies of engineering research labs," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(2), pages 439-468, February.
  14. Kim, Juram & Kim, Seungho & Lee, Changyong, 2019. "Anticipating technological convergence: Link prediction using Wikipedia hyperlinks," Technovation, Elsevier, vol. 79(C), pages 25-34.
  15. Meijun Liu & Sijie Yang & Yi Bu & Ning Zhang, 2023. "Female early-career scientists have conducted less interdisciplinary research in the past six decades: evidence from doctoral theses," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-16, December.
  16. Meijun Liu & Dongbo Shi & Jiang Li, 2017. "Double-edged sword of interdisciplinary knowledge flow from hard sciences to humanities and social sciences: Evidence from China," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-16, September.
  17. Berna Beyhan & M. Teoman Pamukçu, 2011. "Nanotechnology research in Turkey: A university-driven achievement," STPS Working Papers 1107, STPS - Science and Technology Policy Studies Center, Middle East Technical University, revised Jul 2011.
  18. Alan L. Porter & Ismael Rafols, 2009. "Is science becoming more interdisciplinary? Measuring and mapping six research fields over time," Scientometrics, Springer;Akadémiai Kiadó, vol. 81(3), pages 719-745, December.
  19. Elena M. Tur & Evangelos Bourelos & Maureen McKelvey, 2022. "The case of sleeping beauties in nanotechnology: a study of potential breakthrough inventions in emerging technologies," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 69(3), pages 683-708, December.
  20. Nicolas Battard, 2012. "Convergence and multidisciplinarity in nanotechnology: Laboratories as technological hubs," Post-Print hal-01514795, HAL.
  21. van Rijnsoever, Frank J. & Hessels, Laurens K., 2011. "Factors associated with disciplinary and interdisciplinary research collaboration," Research Policy, Elsevier, vol. 40(3), pages 463-472, April.
  22. Jia Zheng & Zhi-yun Zhao & Xu Zhang & Dar-zen Chen & Mu-hsuan Huang, 2014. "International collaboration development in nanotechnology: a perspective of patent network analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(1), pages 683-702, January.
  23. Lawton, Ricky N. & Rudd, Murray A., 2013. "Crossdisciplinary research contributions to the United Kingdom′s National Ecosystem Assessment," Ecosystem Services, Elsevier, vol. 5(C), pages 149-159.
  24. Collyer, Taya A. & Smith, Katherine E., 2020. "An atlas of health inequalities and health disparities research: “How is this all getting done in silos, and why?”," Social Science & Medicine, Elsevier, vol. 264(C).
  25. Julia Melkers & Fang Xiao, 2012. "Boundary-spanning in emerging technology research: determinants of funding success for academic scientists," The Journal of Technology Transfer, Springer, vol. 37(3), pages 251-270, June.
  26. Jiancheng Guan & Yuan Shi, 2012. "Transnational citation, technological diversity and small world in global nanotechnology patenting," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(3), pages 609-633, December.
  27. Kavitha Karunan & Hiran H. Lathabai & Thara Prabhakaran, 2017. "Discovering interdisciplinary interactions between two research fields using citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 335-367, October.
  28. Sick, Nathalie & Bröring, Stefanie, 2022. "Exploring the research landscape of convergence from a TIM perspective: A review and research agenda," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
  29. Qingjun Zhao & Jiancheng Guan, 2011. "International collaboration of three ‘giants’ with the G7 countries in emerging nanobiopharmaceuticals," Scientometrics, Springer;Akadémiai Kiadó, vol. 87(1), pages 159-170, April.
  30. Karmen Stopar & Damjana Drobne & Klemen Eler & Tomaz Bartol, 2016. "Citation analysis and mapping of nanoscience and nanotechnology: identifying the scope and interdisciplinarity of research," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 563-581, February.
  31. Lathabai, Hiran H. & Prabhakaran, Thara & Changat, Manoj, 2015. "Centrality and Flow Vergence gradient based Path analysis of scientific literature: A case study of Biotechnology for Engineering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 157-168.
  32. Lili Wang & Ad Notten & Alexandru Surpatean, 2013. "Interdisciplinarity of nano research fields: a keyword mining approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(3), pages 877-892, March.
  33. Chen, Kaihua & Guan, Jiancheng, 2011. "A bibliometric investigation of research performance in emerging nanobiopharmaceuticals," Journal of Informetrics, Elsevier, vol. 5(2), pages 233-247.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.