IDEAS home Printed from https://ideas.repec.org/r/spr/nathaz/v58y2011i2p645-680.html
   My bibliography  Save this item

Physical vulnerability assessment for alpine hazards: state of the art and future needs

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Stefan Kienberger & Thomas Blaschke & Rukhe Zaidi, 2013. "A framework for spatio-temporal scales and concepts from different disciplines: the ‘vulnerability cube’," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(3), pages 1343-1369, September.
  2. R. L. Ciurean & H. Hussin & C. J. Westen & M. Jaboyedoff & P. Nicolet & L. Chen & S. Frigerio & T. Glade, 2017. "Multi-scale debris flow vulnerability assessment and direct loss estimation of buildings in the Eastern Italian Alps," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 929-957, January.
  3. Md. Munjurul Haque & Sabina Islam & Md. Bahuddin Sikder & Md. Saiful Islam & Annyca Tabassum, 2023. "Assessment of flood vulnerability in Jamuna floodplain: a case study in Jamalpur district, Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 341-363, March.
  4. Aditi Singh & D. P. Kanungo & Shilpa Pal, 2019. "Physical vulnerability assessment of buildings exposed to landslides in India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 753-790, March.
  5. Qigen Lin & Ying Wang & Tianxue Liu & Yingqi Zhu & Qi Sui, 2017. "The Vulnerability of People to Landslides: A Case Study on the Relationship between the Casualties and Volume of Landslides in China," IJERPH, MDPI, vol. 14(2), pages 1-12, February.
  6. Adriana Galderisi & Giada Limongi, 2021. "A Comprehensive Assessment of Exposure and Vulnerabilities in Multi-Hazard Urban Environments: A Key Tool for Risk-Informed Planning Strategies," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
  7. Morteza T. Marvi, 2020. "A review of flood damage analysis for a building structure and contents," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 967-995, July.
  8. Edison Thennavan & Ganapathy Pattukandan Ganapathy & S. S. Chandra Sekaran & Ajay S. Rajawat, 2016. "Use of GIS in assessing building vulnerability for landslide hazard in The Nilgiris, Western Ghats, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(2), pages 1031-1050, June.
  9. Sven Fuchs & Christine Ornetsmüller & Reinhold Totschnig, 2012. "Spatial scan statistics in vulnerability assessment: an application to mountain hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(3), pages 2129-2151, December.
  10. Muhammad Hussain & Muhammad Tayyab & Jiquan Zhang & Ashfaq Ahmad Shah & Kashif Ullah & Ummer Mehmood & Bazel Al-Shaibah, 2021. "GIS-Based Multi-Criteria Approach for Flood Vulnerability Assessment and Mapping in District Shangla: Khyber Pakhtunkhwa, Pakistan," Sustainability, MDPI, vol. 13(6), pages 1-29, March.
  11. Jingjing Kong & Slobodan P. Simonovic, 2019. "Probabilistic Multiple Hazard Resilience Model of an Interdependent Infrastructure System," Risk Analysis, John Wiley & Sons, vol. 39(8), pages 1843-1863, August.
  12. Md. Nawrose Fatemi & Seth Asare Okyere & Stephen Kofi Diko & Michihiro Kita & Motoki Shimoda & Shigeki Matsubara, 2020. "Physical Vulnerability and Local Responses to Flood Damage in Peri-Urban Areas of Dhaka, Bangladesh," Sustainability, MDPI, vol. 12(10), pages 1-23, May.
  13. Konstantinos Karagiorgos & Micha Heiser & Thomas Thaler & Johannes Hübl & Sven Fuchs, 2016. "Micro-sized enterprises: vulnerability to flash floods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 1091-1107, November.
  14. C. Promper & T. Glade, 2016. "Multilayer-exposure maps as a basis for a regional vulnerability assessment for landslides: applied in Waidhofen/Ybbs, Austria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 111-127, May.
  15. Otar Varazanashvili & Nino Tsereteli & Avtandil Amiranashvili & Emil Tsereteli & Elizbar Elizbarashvili & Jemal Dolidze & Lado Qaldani & Manana Saluqvadze & Shota Adamia & Nika Arevadze & Aleksandre G, 2012. "Vulnerability, hazards and multiple risk assessment for Georgia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(3), pages 2021-2056, December.
  16. Insang Yu & Huicheul Jung, 2022. "Flood Risk Assessment to Enable Improved Decision-Making for Climate Change Adaptation Strategies by Central and Local Governments," Sustainability, MDPI, vol. 14(21), pages 1-24, November.
  17. J. Birkmann & O. Cardona & M. Carreño & A. Barbat & M. Pelling & S. Schneiderbauer & S. Kienberger & M. Keiler & D. Alexander & P. Zeil & T. Welle, 2013. "Framing vulnerability, risk and societal responses: the MOVE framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 193-211, June.
  18. Yang Zhou & Yansui Liu & Wenxiang Wu & Ning Li, 2015. "Integrated risk assessment of multi-hazards in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 257-280, August.
  19. Țîncu, Roxana & Zêzere, José Luis & Crăciun, Iulia & Lazăr, Gabriel & Lazăr, Iuliana, 2020. "Quantitative micro-scale flood risk assessment in a section of the Trotuș River, Romania," Land Use Policy, Elsevier, vol. 95(C).
  20. M. Papathoma-Köhle & M. Keiler & R. Totschnig & T. Glade, 2012. "Improvement of vulnerability curves using data from extreme events: debris flow event in South Tyrol," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(3), pages 2083-2105, December.
  21. Melanie Kappes & Margreth Keiler & Kirsten Elverfeldt & Thomas Glade, 2012. "Challenges of analyzing multi-hazard risk: a review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1925-1958, November.
  22. M. Silva & S. Pereira, 2014. "Assessment of physical vulnerability and potential losses of buildings due to shallow slides," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 1029-1050, June.
  23. Wen-Chun Lo & Ting-Chi Tsao & Chih-Hao Hsu, 2012. "Building vulnerability to debris flows in Taiwan: a preliminary study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(3), pages 2107-2128, December.
  24. Sven Fuchs & Margreth Keiler & Sergey Sokratov & Alexander Shnyparkov, 2013. "Spatiotemporal dynamics: the need for an innovative approach in mountain hazard risk management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(3), pages 1217-1241, September.
  25. Insang Yu & Kiyong Park & Eui Hoon Lee, 2021. "Flood Risk Analysis by Building Use in Urban Planning for Disaster Risk Reduction and Climate Change Adaptation," Sustainability, MDPI, vol. 13(23), pages 1-16, November.
  26. Gabi Hufschmidt, 2011. "A comparative analysis of several vulnerability concepts," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(2), pages 621-643, August.
  27. Christoph Aubrecht & Sven Fuchs & Clemens Neuhold, 2013. "Spatio-temporal aspects and dimensions in integrated disaster risk management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(3), pages 1205-1216, September.
  28. Sushant Singh & Neeraj Vedwan, 2015. "Mapping composite vulnerability to groundwater arsenic contamination: an analytical framework and a case study in India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 1883-1908, January.
  29. Nina Graveline & Marine Gremont, 2017. "Measuring and understanding the microeconomic resilience of businesses to lifeline service interruptions due to natural disasters," Post-Print hal-01631780, HAL.
  30. Bianchi, Ettore & Accastello, Cristian & Trappmann, Daniel & Blanc, Simone & Brun, Filippo, 2018. "The Economic Evaluation of Forest Protection Service Against Rockfall: A Review of Experiences and Approaches," Ecological Economics, Elsevier, vol. 154(C), pages 409-418.
  31. Sven Fuchs & Jörn Birkmann & Thomas Glade, 2012. "Vulnerability assessment in natural hazard and risk analysis: current approaches and future challenges," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(3), pages 1969-1975, December.
  32. Mohammad Abdul Quader & Amanat Ullah Khan & Matthieu Kervyn, 2017. "Assessing Risks from Cyclones for Human Lives and Livelihoods in the Coastal Region of Bangladesh," IJERPH, MDPI, vol. 14(8), pages 1-26, July.
  33. Margherita Righini & Ignacio Gatti & Andrea Taramelli & Marcello Arosio & Emiliana Valentini & Serena Sapio & Emma Schiavon, 2024. "Integrated Flood Impact and Vulnerability Assessment Using a Multi-Sensor Earth Observation Mission with the Perspective of an Operational Service in Lombardy, Italy," Land, MDPI, vol. 13(2), pages 1-26, January.
  34. Sergio Cappucci & Maurizio Pollino & Maria Giuseppina Farrace & Lorenzo Della Morte & Valerio Baiocchi, 2024. "Infrastructure Impact Assessment through Multi-Hazard Analysis at Different Scales: The 26 November 2022 Flood Event on the Island of Ischia and Debris Management," Land, MDPI, vol. 13(4), pages 1-28, April.
  35. Mudassir Ali Khan & Zahiraniza Mustaffa & Indra Sati Hamonangan Harahap & Muhammad Bello Ibrahim & Mohamed Ezzat Al-Atroush, 2022. "Assessment of Physical Vulnerability and Uncertainties for Debris Flow Hazard: A Review concerning Climate Change," Land, MDPI, vol. 11(12), pages 1-22, December.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.