IDEAS home Printed from https://ideas.repec.org/r/nat/natcom/v10y2019i1d10.1038_s41467-019-10842-5.html
   My bibliography  Save this item

An inter-model assessment of the role of direct air capture in deep mitigation pathways

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Sandra K. S. Boetcher & Matthew J. Traum & Ted Hippel, 2020. "Thermodynamic Model of CO2 Deposition in Cold Climates," Climatic Change, Springer, vol. 158(3), pages 517-530, February.
  2. Pham, An T. & Craig, Michael T., 2023. "Cost and deployment consequences of advanced planning for negative emissions with direct air capture in the U.S. Eastern Interconnection," Applied Energy, Elsevier, vol. 350(C).
  3. Ayami Hayashi & Fuminori Sano & Takashi Homma & Keigo Akimoto, 2023. "Mitigating trade-offs between global food access and net-zero emissions: the potential contribution of direct air carbon capture and storage," Climatic Change, Springer, vol. 176(5), pages 1-19, May.
  4. Selene Cobo & Ángel Galán-Martín & Victor Tulus & Mark A. J. Huijbregts & Gonzalo Guillén-Gosálbez, 2022. "Human and planetary health implications of negative emissions technologies," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  5. Zhu, Xuancan & Ge, Tianshu & Yang, Fan & Wang, Ruzhu, 2021. "Design of steam-assisted temperature vacuum-swing adsorption processes for efficient CO2 capture from ambient air," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
  6. Hafstead, Marc, 2020. "Benefits of Energy Technology Innovation Part 2: Economy-Wide Direct Air Capture Modeling Results," RFF Working Paper Series 20-20, Resources for the Future.
  7. Galán-Martín, Ángel & Contreras, María del Mar & Romero, Inmaculada & Ruiz, Encarnación & Bueno-Rodríguez, Salvador & Eliche-Quesada, Dolores & Castro-Galiano, Eulogio, 2022. "The potential role of olive groves to deliver carbon dioxide removal in a carbon-neutral Europe: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
  8. Alabi, Tobi Michael & Lawrence, Nathan P. & Lu, Lin & Yang, Zaiyue & Bhushan Gopaluni, R., 2023. "Automated deep reinforcement learning for real-time scheduling strategy of multi-energy system integrated with post-carbon and direct-air carbon captured system," Applied Energy, Elsevier, vol. 333(C).
  9. Holly Jean Buck & Wim Carton & Jens Friis Lund & Nils Markusson, 2023. "Why residual emissions matter right now," Nature Climate Change, Nature, vol. 13(4), pages 351-358, April.
  10. Florian Leblanc & Ruben Bibas & Silvana Mima & Matteo Muratori & Shogo Sakamoto & Fuminori Sano & Nico Bauer & Vassilis Daioglou & Shinichiro Fujimori & Matthew J. Gidden & Estsushi Kato & Steven K. R, 2022. "The contribution of bioenergy to the decarbonization of transport: a multi-model assessment," Climatic Change, Springer, vol. 170(3), pages 1-21, February.
  11. Duncan McLaren & Olaf Corry, 2021. "Clash of Geofutures and the Remaking of Planetary Order: Faultlines underlying Conflicts over Geoengineering Governance," Global Policy, London School of Economics and Political Science, vol. 12(S1), pages 20-33, April.
  12. Martínez-Gordón, R. & Morales-España, G. & Sijm, J. & Faaij, A.P.C., 2021. "A review of the role of spatial resolution in energy systems modelling: Lessons learned and applicability to the North Sea region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
  13. Yang Qiu & Patrick Lamers & Vassilis Daioglou & Noah McQueen & Harmen-Sytze Boer & Mathijs Harmsen & Jennifer Wilcox & André Bardow & Sangwon Suh, 2022. "Environmental trade-offs of direct air capture technologies in climate change mitigation toward 2100," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  14. Katherine Romanak & Mathias Fridahl & Tim Dixon, 2021. "Attitudes on Carbon Capture and Storage (CCS) as a Mitigation Technology within the UNFCCC," Energies, MDPI, vol. 14(3), pages 1-16, January.
  15. Florian Leblanc & Ruben Bibas & Silvana Mima & Matteo Muratori & Shogo Sakamoto & Fuminori Sano & Nico Bauer & Vassilis Daioglou & Shinichiro Fujimori & Matthew J Gidden & Estsushi Kato & Steven K Ros, 2022. "The contribution of bioenergy to the decarbonization of transport: a multi-model assessment," Post-Print hal-03558507, HAL.
  16. Wetzel, Manuel & Gils, Hans Christian & Bertsch, Valentin, 2023. "Green energy carriers and energy sovereignty in a climate neutral European energy system," Renewable Energy, Elsevier, vol. 210(C), pages 591-603.
  17. An, Keju & Farooqui, Azharuddin & McCoy, Sean T., 2022. "The impact of climate on solvent-based direct air capture systems," Applied Energy, Elsevier, vol. 325(C).
  18. Rosa, Lorenzo & Sanchez, Daniel L. & Realmonte, Giulia & Baldocchi, Dennis & D'Odorico, Paolo, 2021. "The water footprint of carbon capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
  19. Bello, Sara & Galán-Martín, Ángel & Feijoo, Gumersindo & Moreira, Maria Teresa & Guillén-Gosálbez, Gonzalo, 2020. "BECCS based on bioethanol from wood residues: Potential towards a carbon-negative transport and side-effects," Applied Energy, Elsevier, vol. 279(C).
  20. Shu, David Yang & Deutz, Sarah & Winter, Benedikt Alexander & Baumgärtner, Nils & Leenders, Ludger & Bardow, André, 2023. "The role of carbon capture and storage to achieve net-zero energy systems: Trade-offs between economics and the environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
  21. Ángel Galán-Martín & Daniel Vázquez & Selene Cobo & Niall Dowell & José Antonio Caballero & Gonzalo Guillén-Gosálbez, 2021. "Delaying carbon dioxide removal in the European Union puts climate targets at risk," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
  22. Cheng, Pengfei & Thierry, David M. & Hendrix, Howard & Dombrowski, Katherine D. & Sachde, Darshan J. & Realff, Matthew J. & Scott, Joseph K., 2023. "Modeling and optimization of carbon-negative NGCC plant enabled by modular direct air capture," Applied Energy, Elsevier, vol. 341(C).
  23. Bogdanov, Dmitrii & Ram, Manish & Aghahosseini, Arman & Gulagi, Ashish & Oyewo, Ayobami Solomon & Child, Michael & Caldera, Upeksha & Sadovskaia, Kristina & Farfan, Javier & De Souza Noel Simas Barbos, 2021. "Low-cost renewable electricity as the key driver of the global energy transition towards sustainability," Energy, Elsevier, vol. 227(C).
  24. Duncan McLaren, 2020. "Quantifying the potential scale of mitigation deterrence from greenhouse gas removal techniques," Climatic Change, Springer, vol. 162(4), pages 2411-2428, October.
  25. Masood S. Alivand & Omid Mazaheri & Yue Wu & Ali Zavabeti & Andrew J. Christofferson & Nastaran Meftahi & Salvy P. Russo & Geoffrey W. Stevens & Colin A. Scholes & Kathryn A. Mumford, 2022. "Engineered assembly of water-dispersible nanocatalysts enables low-cost and green CO2 capture," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  26. Peter J. Cook, 2022. "Resources and reserves in a carbon-constrained world," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 35(3), pages 361-371, December.
  27. Oshiro, Ken & Fujimori, Shinichiro, 2022. "Role of hydrogen-based energy carriers as an alternative option to reduce residual emissions associated with mid-century decarbonization goals," Applied Energy, Elsevier, vol. 313(C).
  28. Motlaghzadeh, Kasra & Schweizer, Vanessa & Craik, Neil & Moreno-Cruz, Juan, 2023. "Key uncertainties behind global projections of direct air capture deployment," Applied Energy, Elsevier, vol. 348(C).
  29. Jason Hickel & Stéphane Hallegatte, 2022. "Can we live within environmental limits and still reduce poverty? Degrowth or decoupling?," Development Policy Review, Overseas Development Institute, vol. 40(1), January.
  30. Lowe, R.J. & Drummond, P., 2022. "Solar, wind and logistic substitution in global energy supply to 2050 – Barriers and implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.