IDEAS home Printed from https://ideas.repec.org/r/gam/jeners/v4y2011i11p1916-1936d14717.html
   My bibliography  Save this item

Turbulent Flow Inside and Above a Wind Farm: A Wind-Tunnel Study

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Jae-ho Jeong & Kwangtae Ha, 2020. "Evaluation of Wind Flow Characteristics by RANS-Based Numerical Site Calibration (NSC) Method with Met-Tower Measurements and Its Application to a Complex Terrain," Energies, MDPI, vol. 13(19), pages 1-16, October.
  2. Zhang, Baoshou & Song, Baowei & Mao, Zhaoyong & Tian, Wenlong, 2017. "A novel wake energy reuse method to optimize the layout for Savonius-type vertical axis wind turbines," Energy, Elsevier, vol. 121(C), pages 341-355.
  3. Hayat, Imran & Chatterjee, Tanmoy & Liu, Huiwen & Peet, Yulia T. & Chamorro, Leonardo P., 2019. "Exploring wind farms with alternating two- and three-bladed wind turbines," Renewable Energy, Elsevier, vol. 138(C), pages 764-774.
  4. C. A. Lopez-Villalobos & O. Rodriguez-Hernandez & R. Campos-Amezcua & Guillermo Hernandez-Cruz & O. A. Jaramillo & J. L. Mendoza, 2018. "Wind Turbulence Intensity at La Ventosa, Mexico: A Comparative Study with the IEC61400 Standards," Energies, MDPI, vol. 11(11), pages 1-19, November.
  5. Mattuella, J.M.L. & Loredo-Souza, A.M. & Oliveira, M.G.K. & Petry, A.P., 2016. "Wind tunnel experimental analysis of a complex terrain micrositing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 110-119.
  6. Newman, A. Jensen & Cal, Raúl Bayoán & Castillo, Luciano, 2015. "Blade number effects in a scaled down wind farm," Renewable Energy, Elsevier, vol. 81(C), pages 472-481.
  7. Dai, Xuan & Xu, Da & Zhang, Mengqi & Stevens, Richard J.A.M., 2022. "A three-dimensional dynamic mode decomposition analysis of wind farm flow aerodynamics," Renewable Energy, Elsevier, vol. 191(C), pages 608-624.
  8. Smith, Sarah E. & Travis, Kristin N. & Djeridi, Henda & Obligado, Martín & Cal, Raúl Bayoán, 2021. "Dynamic effects of inertial particles on the wake recovery of a model wind turbine," Renewable Energy, Elsevier, vol. 164(C), pages 346-361.
  9. Kale, Baris & Buckingham, Sophia & van Beeck, Jeroen & Cuerva-Tejero, Alvaro, 2023. "Comparison of the wake characteristics and aerodynamic response of a wind turbine under varying atmospheric conditions using WRF-LES-GAD and WRF-LES-GAL wind turbine models," Renewable Energy, Elsevier, vol. 216(C).
  10. Chen, Guang & Li, Xiao-Bai & Liang, Xi-Feng, 2022. "IDDES simulation of the performance and wake dynamics of the wind turbines under different turbulent inflow conditions," Energy, Elsevier, vol. 238(PB).
  11. Sun, Haiying & Gao, Xiaoxia & Yang, Hongxing, 2020. "A review of full-scale wind-field measurements of the wind-turbine wake effect and a measurement of the wake-interaction effect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
  12. Karina Soto-Rivas & David Richter & Cristian Escauriaza, 2019. "A Formulation of the Thrust Coefficient for Representing Finite-Sized Farms of Tidal Energy Converters," Energies, MDPI, vol. 12(20), pages 1-17, October.
  13. Yaqing Jin & Huiwen Liu & Rajan Aggarwal & Arvind Singh & Leonardo P. Chamorro, 2016. "Effects of Freestream Turbulence in a Model Wind Turbine Wake," Energies, MDPI, vol. 9(10), pages 1-12, October.
  14. He, Ruiyang & Sun, Haiying & Gao, Xiaoxia & Yang, Hongxing, 2022. "Wind tunnel tests for wind turbines: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
  15. Strickland, Jessica M.I. & Gadde, Srinidhi N. & Stevens, Richard J.A.M., 2022. "Wind farm blockage in a stable atmospheric boundary layer," Renewable Energy, Elsevier, vol. 197(C), pages 50-58.
  16. Sun, Haiying & Yang, Hongxing, 2020. "Numerical investigation of the average wind speed of a single wind turbine and development of a novel three-dimensional multiple wind turbine wake model," Renewable Energy, Elsevier, vol. 147(P1), pages 192-203.
  17. Newman, A. Jensen & Drew, Donald A. & Castillo, Luciano, 2014. "Pseudo spectral analysis of the energy entrainment in a scaled down wind farm," Renewable Energy, Elsevier, vol. 70(C), pages 129-141.
  18. Tanmoy Chatterjee & Yulia T. Peet, 2020. "Dynamics of Large Scale Turbulence in Finite-Sized Wind Farm Canopy Using Proper Orthogonal Decomposition and a Novel Fourier-POD Framework," Energies, MDPI, vol. 13(7), pages 1-25, April.
  19. Majid Bastankhah & Fernando Porté-Agel, 2017. "A New Miniature Wind Turbine for Wind Tunnel Experiments. Part II: Wake Structure and Flow Dynamics," Energies, MDPI, vol. 10(7), pages 1-19, July.
  20. Böhme, Gustavo S. & Fadigas, Eliane A. & Gimenes, André L.V. & Tassinari, Carlos E.M., 2018. "Wake effect measurement in complex terrain - A case study in Brazilian wind farms," Energy, Elsevier, vol. 161(C), pages 277-283.
  21. Liang, Xiaoling & Fu, Shifeng & Cai, Fulin & Han, Xingxing & Zhu, Weijun & Yang, Hua & Shen, Wenzhong, 2023. "Experimental investigation on wake characteristics of wind turbine and a new two-dimensional wake model," Renewable Energy, Elsevier, vol. 203(C), pages 373-381.
  22. César Sánchez-Rucobo y Huerdo & Ma. Eugenia Allende-Arandía & Bernardo Figueroa-Espinoza & Estefanía García-Caballero & Adolfo Contreras-Ruiz Esparza & Christian M. Appendini, 2023. "Hybrid Renewable Energy System for Terminos Lagoon, Campeche, Mexico," Energies, MDPI, vol. 16(10), pages 1-26, May.
  23. Pankaj K. Jha & Earl P. N. Duque & Jessica L. Bashioum & Sven Schmitz, 2015. "Unraveling the Mysteries of Turbulence Transport in a Wind Farm," Energies, MDPI, vol. 8(7), pages 1-29, June.
  24. Stevens, Richard J.A.M. & Martínez-Tossas, Luis A. & Meneveau, Charles, 2018. "Comparison of wind farm large eddy simulations using actuator disk and actuator line models with wind tunnel experiments," Renewable Energy, Elsevier, vol. 116(PA), pages 470-478.
  25. Wu, Yu-Ting & Porté-Agel, Fernando, 2015. "Modeling turbine wakes and power losses within a wind farm using LES: An application to the Horns Rev offshore wind farm," Renewable Energy, Elsevier, vol. 75(C), pages 945-955.
  26. Xiaolei Yang & Daniel Foti & Christopher Kelley & David Maniaci & Fotis Sotiropoulos, 2020. "Wake Statistics of Different-Scale Wind Turbines under Turbulent Boundary Layer Inflow," Energies, MDPI, vol. 13(11), pages 1-17, June.
  27. Rockel, Stanislav & Peinke, Joachim & Hölling, Michael & Cal, Raúl Bayoán, 2016. "Wake to wake interaction of floating wind turbine models in free pitch motion: An eddy viscosity and mixing length approach," Renewable Energy, Elsevier, vol. 85(C), pages 666-676.
  28. Syed Ahmed Kabir, Ijaz Fazil & Safiyullah, Ferozkhan & Ng, E.Y.K. & Tam, Vivian W.Y., 2020. "New analytical wake models based on artificial intelligence and rivalling the benchmark full-rotor CFD predictions under both uniform and ABL inflows," Energy, Elsevier, vol. 193(C).
  29. Yang, Di & Meneveau, Charles & Shen, Lian, 2014. "Effect of downwind swells on offshore wind energy harvesting – A large-eddy simulation study," Renewable Energy, Elsevier, vol. 70(C), pages 11-23.
  30. Huiwen Liu & Imran Hayat & Yaqing Jin & Leonardo P. Chamorro, 2018. "On the Evolution of the Integral Time Scale within Wind Farms," Energies, MDPI, vol. 11(1), pages 1-11, January.
  31. Zhenzhou Shao & Ying Wu & Li Li & Shuang Han & Yongqian Liu, 2019. "Multiple Wind Turbine Wakes Modeling Considering the Faster Wake Recovery in Overlapped Wakes," Energies, MDPI, vol. 12(4), pages 1-14, February.
  32. Kumer, Valerie-M. & Reuder, Joachim & Dorninger, Manfred & Zauner, Rudolf & Grubišić, Vanda, 2016. "Turbulent kinetic energy estimates from profiling wind LiDAR measurements and their potential for wind energy applications," Renewable Energy, Elsevier, vol. 99(C), pages 898-910.
  33. Zhaobin Li & Xiaohao Liu & Xiaolei Yang, 2022. "Review of Turbine Parameterization Models for Large-Eddy Simulation of Wind Turbine Wakes," Energies, MDPI, vol. 15(18), pages 1-28, September.
  34. Majid Bastankhah & Fernando Porté-Agel, 2017. "A New Miniature Wind Turbine for Wind Tunnel Experiments. Part I: Design and Performance," Energies, MDPI, vol. 10(7), pages 1-19, July.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.