IDEAS home Printed from https://ideas.repec.org/r/eee/transa/v69y2014icp379-391.html
   My bibliography  Save this item

Impact of weather on urban transit ridership

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Sun, Daniel(Jian) & Ding, Xueqing, 2019. "Spatiotemporal evolution of ridesourcing markets under the new restriction policy: A case study in Shanghai," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 227-239.
  2. Shokoohyar, Sina & Sobhani, Ahmad & Sobhani, Anae, 2020. "Impacts of trip characteristics and weather condition on ride-sourcing network: Evidence from Uber and Lyft," Research in Transportation Economics, Elsevier, vol. 80(C).
  3. Miao, Qing & Welch, Eric W. & Sriraj, P.S., 2019. "Extreme weather, public transport ridership and moderating effect of bus stop shelters," Journal of Transport Geography, Elsevier, vol. 74(C), pages 125-133.
  4. Wu, Pan & Xu, Lunhui & Zhong, Lingshu & Gao, Kun & Qu, Xiaobo & Pei, Mingyang, 2022. "Revealing the determinants of the intermodal transfer ratio between metro and bus systems considering spatial variations," Journal of Transport Geography, Elsevier, vol. 104(C).
  5. Dandan Chen & Yong Zhang & Liangpeng Gao & Nana Geng & Xuefeng Li, 2017. "The impact of rainfall on the temporal and spatial distribution of taxi passengers," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-16, September.
  6. Li, Junlong & Li, Xuhong & Chen, Dawei & Godding, Lucy, 2018. "Assessment of metro ridership fluctuation caused by weather conditions in Asian context: Using archived weather and ridership data in Nanjing," Journal of Transport Geography, Elsevier, vol. 66(C), pages 356-368.
  7. Zhenjun Zhu & Jun Zeng & Xiaolin Gong & Yudong He & Shucheng Qiu, 2021. "Analyzing Influencing Factors of Transfer Passenger Flow of Urban Rail Transit: A New Approach Based on Nested Logit Model Considering Transfer Choices," IJERPH, MDPI, vol. 18(16), pages 1-14, August.
  8. Zhao, Jinbao & Wang, Jian & Xing, Zhaomin & Luan, Xin & Jiang, Yang, 2018. "Weather and cycling: Mining big data to have an in-depth understanding of the association of weather variability with cycling on an off-road trail and an on-road bike lane," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 119-135.
  9. Jiang, Shixiong & Cai, Canhuang, 2022. "Unraveling the dynamic impacts of COVID-19 on metro ridership: An empirical analysis of Beijing and Shanghai, China," Transport Policy, Elsevier, vol. 127(C), pages 158-170.
  10. Bean, Richard & Pojani, Dorina & Corcoran, Jonathan, 2021. "How does weather affect bikeshare use? A comparative analysis of forty cities across climate zones," Journal of Transport Geography, Elsevier, vol. 95(C).
  11. Wei, Ming, 2022. "How does the weather affect public transit ridership? A model with weather-passenger variations," Journal of Transport Geography, Elsevier, vol. 98(C).
  12. Kashfi, Syeed Anta & Bunker, Jonathan M. & Yigitcanlar, Tan, 2016. "Modelling and analysing effects of complex seasonality and weather on an area's daily transit ridership rate," Journal of Transport Geography, Elsevier, vol. 54(C), pages 310-324.
  13. Markolf, Samuel A. & Hoehne, Christopher & Fraser, Andrew & Chester, Mikhail V. & Underwood, B. Shane, 2019. "Transportation resilience to climate change and extreme weather events – Beyond risk and robustness," Transport Policy, Elsevier, vol. 74(C), pages 174-186.
  14. Christian Martin Mützel & Joachim Scheiner, 2022. "Investigating spatio-temporal mobility patterns and changes in metro usage under the impact of COVID-19 using Taipei Metro smart card data," Public Transport, Springer, vol. 14(2), pages 343-366, June.
  15. Wei, Ming, 2022. "Investigating the influence of weather on public transit passenger’s travel behaviour: Empirical findings from Brisbane, Australia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 156(C), pages 36-51.
  16. Wu, Jingwen & Liao, Hua, 2020. "Weather, travel mode choice, and impacts on subway ridership in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 264-279.
  17. Timothy Otim & Leandro Dörfer & Dina Bousdar Ahmed & Estefania Munoz Diaz, 2022. "Modeling the Impact of Weather and Context Data on Transport Mode Choices: A Case Study of GPS Trajectories from Beijing," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
  18. Pan Wu & Jinlong Li & Yuzhuang Pian & Xiaochen Li & Zilin Huang & Lunhui Xu & Guilin Li & Ruonan Li, 2022. "How Determinants Affect Transfer Ridership between Metro and Bus Systems: A Multivariate Generalized Poisson Regression Analysis Method," Sustainability, MDPI, vol. 14(15), pages 1-31, August.
  19. Yuxin He & Yang Zhao & Kwok Leung Tsui, 2021. "An adapted geographically weighted LASSO (Ada-GWL) model for predicting subway ridership," Transportation, Springer, vol. 48(3), pages 1185-1216, June.
  20. Wang, Haoyun & Noland, Robert B., 2021. "Bikeshare and subway ridership changes during the COVID-19 pandemic in New York City," Transport Policy, Elsevier, vol. 106(C), pages 262-270.
  21. Morton, Craig, 2020. "The demand for cycle sharing: Examining the links between weather conditions, air quality levels, and cycling demand for regular and casual users," Journal of Transport Geography, Elsevier, vol. 88(C).
  22. Gang Xue & Daqing Gong & Jianhai Zhang & Peng Zhang & Qimin Tai, 2020. "Passenger Travel Patterns and Behavior Analysis of Long-Term Staying in Subway System by Massive Smart Card Data," Energies, MDPI, vol. 13(10), pages 1-23, May.
  23. Zhou, Yufeng & Li, Zihao & Meng, Yangyang & Li, Zhongwen & Zhong, Maohua, 2021. "Analyzing spatio-temporal impacts of extreme rainfall events on metro ridership characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 577(C).
  24. Yang, Xiaobao & Yue, Xianfei & Sun, Huijun & Gao, Ziyou & Wang, Wencheng, 2021. "Impact of weather on freeway origin-destination volume in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 143(C), pages 30-47.
  25. Liping Ge & Malek Sarhani & Stefan Voß & Lin Xie, 2021. "Review of Transit Data Sources: Potentials, Challenges and Complementarity," Sustainability, MDPI, vol. 13(20), pages 1-37, October.
  26. Peng Guo & Yanling Sun & Qiyi Chen & Junrong Li & Zifei Liu, 2022. "The Impact of Rainfall on Urban Human Mobility from Taxi GPS Data," Sustainability, MDPI, vol. 14(15), pages 1-16, July.
  27. Kevin Lanza & Casey P. Durand, 2021. "Heat-Moderating Effects of Bus Stop Shelters and Tree Shade on Public Transport Ridership," IJERPH, MDPI, vol. 18(2), pages 1-15, January.
  28. Marijo Vidas & Vladan Tubić & Ivan Ivanović & Marko Subotić, 2022. "One Approach to Quantifying Rainfall Impact on the Traffic Flow of a Specific Freeway Segment," Sustainability, MDPI, vol. 14(9), pages 1-16, April.
  29. Zanni, Alberto M. & Ryley, Tim J., 2015. "The impact of extreme weather conditions on long distance travel behaviour," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 305-319.
  30. Jiang, Shixiong & Guan, Wei & Zhang, Wenyi & Chen, Xu & Yang, Liu, 2017. "Human mobility in space from three modes of public transportation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 227-238.
  31. Tang, Jinjun & Zhao, Chuyun & Liu, Fang & Hao, Wei & Gao, Fan, 2022. "Analyzing travel destinations distribution using large-scaled GPS trajectories: A spatio-temporal Log-Gaussian Cox process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
  32. Wei, Ming & Liu, Yan & Sigler, Thomas & Liu, Xiaoyang & Corcoran, Jonathan, 2019. "The influence of weather conditions on adult transit ridership in the sub-tropics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 125(C), pages 106-118.
  33. Najafabadi, Shirin & Hamidi, Ali & Allahviranloo, Mahdieh & Devineni, Naresh, 2019. "Does demand for subway ridership in Manhattan depend on the rainfall events?," Transport Policy, Elsevier, vol. 74(C), pages 201-213.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.