IDEAS home Printed from https://ideas.repec.org/r/eee/renene/v35y2010i7p1537-1550.html
   My bibliography  Save this item

A computational capacity resistance model (CaRM) for vertical ground-coupled heat exchangers

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Pasquier, Philippe & Marcotte, Denis, 2012. "Short-term simulation of ground heat exchanger with an improved TRCM," Renewable Energy, Elsevier, vol. 46(C), pages 92-99.
  2. Zarrella, Angelo & Scarpa, Massimiliano & De Carli, Michele, 2011. "Short time step analysis of vertical ground-coupled heat exchangers: The approach of CaRM," Renewable Energy, Elsevier, vol. 36(9), pages 2357-2367.
  3. Borja Badenes & Miguel Ángel Mateo Pla & Lenin G. Lemus-Zúñiga & Begoña Sáiz Mauleón & Javier F. Urchueguía, 2017. "On the Influence of Operational and Control Parameters in Thermal Response Testing of Borehole Heat Exchangers," Energies, MDPI, vol. 10(9), pages 1-15, September.
  4. Jensen-Page, Linden & Narsilio, Guillermo A. & Bidarmaghz, Asal & Johnston, Ian W., 2018. "Investigation of the effect of seasonal variation in ground temperature on thermal response tests," Renewable Energy, Elsevier, vol. 125(C), pages 609-619.
  5. Holmberg, Henrik & Acuña, José & Næss, Erling & Sønju, Otto K., 2016. "Thermal evaluation of coaxial deep borehole heat exchangers," Renewable Energy, Elsevier, vol. 97(C), pages 65-76.
  6. Shuyang Tu & Xiuqin Yang & Xiang Zhou & Maohui Luo & Xu Zhang, 2019. "Experimenting and Modeling Thermal Performance of Ground Heat Exchanger Under Freezing Soil Conditions," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
  7. Minaei, Asgar & Talee, Zahra & Safikhani, Hamed & Ghaebi, Hadi, 2021. "Thermal resistance capacity model for transient simulation of Earth-Air Heat Exchangers," Renewable Energy, Elsevier, vol. 167(C), pages 558-567.
  8. Claudia Naldi & Aminhossein Jahanbin & Enzo Zanchini, 2021. "A New Estimate of Sand and Grout Thermal Properties in the Sandbox Experiment for Accurate Validations of Borehole Simulation Codes," Energies, MDPI, vol. 14(4), pages 1-25, February.
  9. Beier, Richard A. & Spitler, Jeffrey D., 2016. "Weighted average of inlet and outlet temperatures in borehole heat exchangers," Applied Energy, Elsevier, vol. 174(C), pages 118-129.
  10. Zarrella, Angelo & Capozza, Antonio & De Carli, Michele, 2013. "Analysis of short helical and double U-tube borehole heat exchangers: A simulation-based comparison," Applied Energy, Elsevier, vol. 112(C), pages 358-370.
  11. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
  12. Carotenuto, Alberto & Ciccolella, Michela & Massarotti, Nicola & Mauro, Alessandro, 2016. "Models for thermo-fluid dynamic phenomena in low enthalpy geothermal energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 330-355.
  13. Laura Carnieletto & Borja Badenes & Marco Belliardi & Adriana Bernardi & Samantha Graci & Giuseppe Emmi & Javier F. Urchueguía & Angelo Zarrella & Antonino Di Bella & Giorgia Dalla Santa & Antonio Gal, 2019. "A European Database of Building Energy Profiles to Support the Design of Ground Source Heat Pumps," Energies, MDPI, vol. 12(13), pages 1-23, June.
  14. Mottaghy, Darius & Dijkshoorn, Lydia, 2012. "Implementing an effective finite difference formulation for borehole heat exchangers into a heat and mass transport code," Renewable Energy, Elsevier, vol. 45(C), pages 59-71.
  15. Ioan Sarbu & Calin Sebarchievici, 2016. "Performance Evaluation of Radiator and Radiant Floor Heating Systems for an Office Room Connected to a Ground-Coupled Heat Pump," Energies, MDPI, vol. 9(4), pages 1-19, March.
  16. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Insights into geothermal utilization of abandoned oil and gas wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 44-60.
  17. Maestre, Ismael Rodríguez & Gallero, Francisco Javier González & Gómez, Pascual Álvarez & Pérez-Lombard, Luis, 2015. "A new RC and g-function hybrid model to simulate vertical ground heat exchangers," Renewable Energy, Elsevier, vol. 78(C), pages 631-642.
  18. Faizal, Mohammed & Bouazza, Abdelmalek & McCartney, John S., 2022. "Thermal resistance analysis of an energy pile and adjacent soil using radial temperature gradients," Renewable Energy, Elsevier, vol. 190(C), pages 1066-1077.
  19. Ana Vieira & Maria Alberdi-Pagola & Paul Christodoulides & Saqib Javed & Fleur Loveridge & Frederic Nguyen & Francesco Cecinato & João Maranha & Georgios Florides & Iulia Prodan & Gust Van Lysebetten , 2017. "Characterisation of Ground Thermal and Thermo-Mechanical Behaviour for Shallow Geothermal Energy Applications," Energies, MDPI, vol. 10(12), pages 1-51, December.
  20. Aminhossein Jahanbin & Claudia Naldi & Enzo Zanchini, 2020. "Relation Between Mean Fluid Temperature and Outlet Temperature for Single U-Tube Boreholes," Energies, MDPI, vol. 13(4), pages 1-23, February.
  21. Claudia Naldi & Enzo Zanchini, 2019. "Full-Time-Scale Fluid-to-Ground Thermal Response of a Borefield with Uniform Fluid Temperature," Energies, MDPI, vol. 12(19), pages 1-18, September.
  22. Nguyen, A. & Pasquier, P. & Marcotte, D., 2015. "Thermal resistance and capacity model for standing column wells operating under a bleed control," Renewable Energy, Elsevier, vol. 76(C), pages 743-756.
  23. Dai, L.H. & Shang, Y. & Li, X.L. & Li, S.F., 2016. "Analysis on the transient heat transfer process inside and outside the borehole for a vertical U-tube ground heat exchanger under short-term heat storage," Renewable Energy, Elsevier, vol. 87(P3), pages 1121-1129.
  24. Zanchini, Enzo & Jahanbin, Aminhossein, 2017. "Correlations to determine the mean fluid temperature of double U-tube borehole heat exchangers with a typical geometry," Applied Energy, Elsevier, vol. 206(C), pages 1406-1415.
  25. Charles Maragna & Fleur Loveridge, 2021. "A New Approach for Characterizing Pile Heat Exchangers Using Thermal Response Tests," Energies, MDPI, vol. 14(12), pages 1-18, June.
  26. Wagner, Valentin & Bayer, Peter & Kübert, Markus & Blum, Philipp, 2012. "Numerical sensitivity study of thermal response tests," Renewable Energy, Elsevier, vol. 41(C), pages 245-253.
  27. Ioan Sarbu & Calin Sebarchievici, 2020. "Exploratory Research to Improve Energy-Efficiency of a Ground-Coupled Heat Pump Utilizing an Automatic Control Device of Circulation Pump Speed," Energies, MDPI, vol. 13(19), pages 1-19, September.
  28. Marcotte, D. & Pasquier, P., 2014. "Unit-response function for ground heat exchanger with parallel, series or mixed borehole arrangement," Renewable Energy, Elsevier, vol. 68(C), pages 14-24.
  29. Li, Min & Lai, Alvin C.K., 2013. "Analytical model for short-time responses of ground heat exchangers with U-shaped tubes: Model development and validation," Applied Energy, Elsevier, vol. 104(C), pages 510-516.
  30. Rees, Simon J., 2015. "An extended two-dimensional borehole heat exchanger model for simulation of short and medium timescale thermal response," Renewable Energy, Elsevier, vol. 83(C), pages 518-526.
  31. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
  32. Choi, Hoon Ki & Yoo, Geun Jong & Pak, Jae Hun & Lee, Chang Hee, 2018. "Numerical study on heat transfer characteristics in branch tube type ground heat exchanger," Renewable Energy, Elsevier, vol. 115(C), pages 585-599.
  33. Beaudry, Gabrielle & Pasquier, Philippe & Marcotte, Denis, 2021. "A fast convolution-based method to simulate time-varying flow rates in closed-loop and standing column well ground heat exchangers," Renewable Energy, Elsevier, vol. 174(C), pages 55-72.
  34. Gianluca Cadelano & Alessandro Bortolin & Giovanni Ferrarini & Paolo Bison & Giorgia Dalla Santa & Eloisa Di Sipio & Adriana Bernardi & Antonio Galgaro, 2021. "Evaluation of the Effect of Anti-Corrosion Coatings on the Thermal Resistance of Ground Heat Exchangers for Shallow Geothermal Applications," Energies, MDPI, vol. 14(9), pages 1-12, April.
  35. Gordon, David & Bolisetti, Tirupati & Ting, David S-K. & Reitsma, Stanley, 2018. "Experimental and analytical investigation on pipe sizes for a coaxial borehole heat exchanger," Renewable Energy, Elsevier, vol. 115(C), pages 946-953.
  36. Lamarche, Louis, 2013. "Short-term behavior of classical analytic solutions for the design of ground-source heat pumps," Renewable Energy, Elsevier, vol. 57(C), pages 171-180.
  37. Al-Khoury, Rafid & Focaccia, Sara, 2016. "A spectral model for transient heat flow in a double U-tube geothermal heat pump system," Renewable Energy, Elsevier, vol. 85(C), pages 195-205.
  38. Liu, Zhengxuan & Yu, Zhun (Jerry) & Yang, Tingting & Roccamena, Letizia & Sun, Pengcheng & Li, Shuisheng & Zhang, Guoqiang & El Mankibi, Mohamed, 2019. "Numerical modeling and parametric study of a vertical earth-to-air heat exchanger system," Energy, Elsevier, vol. 172(C), pages 220-231.
  39. Luo, Yongqaing & Guo, Hongshan & Meggers, Forrest & Zhang, Ling, 2019. "Deep coaxial borehole heat exchanger: Analytical modeling and thermal analysis," Energy, Elsevier, vol. 185(C), pages 1298-1313.
  40. Cui, Yuanlong & Zhu, Jie & Twaha, Ssennoga & Riffat, Saffa, 2018. "A comprehensive review on 2D and 3D models of vertical ground heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 84-114.
  41. Dehghan B., Babak & Kukrer, Ergin, 2017. "A new 1D analytical model for investigating the long term heat transfer rate of a borehole ground heat exchanger by Green's function method," Renewable Energy, Elsevier, vol. 108(C), pages 615-621.
  42. Matt S. Mitchell & Jeffrey D. Spitler, 2020. "An Enhanced Vertical Ground Heat Exchanger Model for Whole-Building Energy Simulation," Energies, MDPI, vol. 13(16), pages 1-27, August.
  43. Zarrella, Angelo & De Carli, Michele, 2013. "Heat transfer analysis of short helical borehole heat exchangers," Applied Energy, Elsevier, vol. 102(C), pages 1477-1491.
  44. Acuña, José & Palm, Björn, 2013. "Distributed thermal response tests on pipe-in-pipe borehole heat exchangers," Applied Energy, Elsevier, vol. 109(C), pages 312-320.
  45. Javier F. Urchueguía & Lenin-Guillermo Lemus-Zúñiga & Jose-Vicente Oliver-Villanueva & Borja Badenes & Miguel A. Mateo Pla & José Manuel Cuevas, 2018. "How Reliable Are Standard Thermal Response Tests? An Assessment Based on Long-Term Thermal Response Tests Under Different Operational Conditions," Energies, MDPI, vol. 11(12), pages 1-24, November.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.