IDEAS home Printed from https://ideas.repec.org/r/eee/intfor/v31y2015i1p33-50.html
   My bibliography  Save this item

Forecasting GDP growth using mixed-frequency models with switching regimes

Citations

Blog mentions

As found by EconAcademics.org, the blog aggregator for Economics research:
  1. Last Week's Reading
    by Dave Giles in Econometrics Beat: Dave Giles' Blog on 2013-06-04 00:35:00

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Markus Heinrich & Magnus Reif, 2018. "Forecasting using mixed-frequency VARs with time-varying parameters," ifo Working Paper Series 273, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
  2. Fady Barsoum, 2015. "Point and Density Forecasts Using an Unrestricted Mixed-Frequency VAR Model," Working Paper Series of the Department of Economics, University of Konstanz 2015-19, Department of Economics, University of Konstanz.
  3. Dušan Marković & Igor Mladenović & Miloš Milovančević, 2017. "RETRACTED ARTICLE: Estimation of the most influential science and technology factors for economic growth forecasting by soft computing technique," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(3), pages 1133-1146, May.
  4. Marie Bessec, 2019. "Revisiting the transitional dynamics of business cycle phases with mixed-frequency data," Econometric Reviews, Taylor & Francis Journals, vol. 38(7), pages 711-732, August.
  5. Qian Chen & Xiang Gao & Shan Xie & Li Sun & Shuairu Tian & Shigeyuki Hamori, 2021. "On the Predictability of China Macro Indicator with Carbon Emissions Trading," Energies, MDPI, vol. 14(5), pages 1-24, February.
  6. Bartkus Algirdas, 2016. "A New Model with Regime Switching Errors: Forecasting Gdp in Times of Great Recession," Ekonomika (Economics), Sciendo, vol. 95(2), pages 7-29, February.
  7. Goran Maksimović & Srđan Jović & David Jovović & Marina Jovović, 2019. "RETRACTED ARTICLE: Analyses of Economic Development Based on Different Factors," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 1103-1109, March.
  8. Petra Karanikić & Igor Mladenović & Svetlana Sokolov-Mladenović & Meysam Alizamir, 2017. "RETRACTED ARTICLE: Prediction of economic growth by extreme learning approach based on science and technology transfer," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(3), pages 1395-1401, May.
  9. Yunxu Wang & Chi-Wei Su & Yuchen Zhang & Oana-Ramona Lobonţ & Qin Meng, 2023. "Effectiveness of Principal-Component-Based Mixed-Frequency Error Correction Model in Predicting Gross Domestic Product," Mathematics, MDPI, vol. 11(19), pages 1-14, September.
  10. Marković, Dušan & Petković, Dalibor & Nikolić, Vlastimir & Milovančević, Miloš & Petković, Biljana, 2017. "Soft computing prediction of economic growth based in science and technology factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 217-220.
  11. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
  12. Afees A. Salisu & Rangan Gupta & Riza Demirer, 2022. "A Note On Uncertainty Due To Infectious Diseases And Output Growth Of The United States: A Mixed-Frequency Forecasting Experiment," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 17(02), pages 1-9, June.
  13. Salisu, Afees A. & Ogbonna, Ahamuefula E., 2019. "Another look at the energy-growth nexus: New insights from MIDAS regressions," Energy, Elsevier, vol. 174(C), pages 69-84.
  14. Vrontos, Spyridon D. & Galakis, John & Vrontos, Ioannis D., 2021. "Modeling and predicting U.S. recessions using machine learning techniques," International Journal of Forecasting, Elsevier, vol. 37(2), pages 647-671.
  15. Gani Ramadani & Magdalena Petrovska & Vesna Bucevska, 2021. "Evaluation of mixed frequency approaches for tracking near-term economic developments in North Macedonia," Working Papers 2021-03, National Bank of the Republic of North Macedonia.
  16. Pan, Zhiyuan & Wang, Qing & Wang, Yudong & Yang, Li, 2018. "Forecasting U.S. real GDP using oil prices: A time-varying parameter MIDAS model," Energy Economics, Elsevier, vol. 72(C), pages 177-187.
  17. Đokić, Aleksandar & Jović, Srđan, 2017. "Evaluation of agriculture and industry effect on economic health by ANFIS approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 396-399.
  18. Ramadani Gani & Petrovska Magdalena & Bucevska Vesna, 2021. "Evaluation of Mixed Frequency Approaches for Tracking Near-Term Economic Developments in North Macedonia," South East European Journal of Economics and Business, Sciendo, vol. 16(2), pages 43-52, December.
  19. Jiang, Cuixia & Xiong, Wei & Xu, Qifa & Liu, Yezheng, 2021. "Predicting default of listed companies in mainland China via U-MIDAS Logit model with group lasso penalty," Finance Research Letters, Elsevier, vol. 38(C).
  20. Afees A. Salisu & Rangan Gupta, 2021. "How Do Housing Returns in Emerging Countries Respond to Oil Shocks? A MIDAS Touch," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 57(15), pages 4286-4311, December.
  21. David Alaminos & M. Belén Salas & Manuel A. Fernández-Gámez, 2022. "Quantum Computing and Deep Learning Methods for GDP Growth Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 803-829, February.
  22. Afees A. Salisu & Ahamuefula Ephraim Ogbonna, 2017. "Improving the Predictive ability of oil for inflation: An ADL-MIDAS Approach," Working Papers 025, Centre for Econometric and Allied Research, University of Ibadan.
  23. Hassani, Hossein & Rua, António & Silva, Emmanuel Sirimal & Thomakos, Dimitrios, 2019. "Monthly forecasting of GDP with mixed-frequency multivariate singular spectrum analysis," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1263-1272.
  24. Jian Chai & Puju Cao & Xiaoyang Zhou & Kin Keung Lai & Xiaofeng Chen & Siping (Sue) Su, 2018. "The Conductive and Predictive Effect of Oil Price Fluctuations on China’s Industry Development Based on Mixed-Frequency Data," Energies, MDPI, vol. 11(6), pages 1-14, May.
  25. Heinrich, Markus, 2020. "Does the Current State of the Business Cycle matter for Real-Time Forecasting? A Mixed-Frequency Threshold VAR approach," EconStor Preprints 219312, ZBW - Leibniz Information Centre for Economics.
  26. Goodarzi, Milad & Meinerding, Christoph, 2023. "Asset allocation with recursive parameter updating and macroeconomic regime identifiers," Discussion Papers 06/2023, Deutsche Bundesbank.
  27. Marie Bessec, 2015. "Revisiting the transitional dynamics of business-cycle phases with mixed frequency data," Post-Print hal-01276824, HAL.
  28. Xu, Qifa & Zhuo, Xingxuan & Jiang, Cuixia & Liu, Xi & Liu, Yezheng, 2018. "Group penalized unrestricted mixed data sampling model with application to forecasting US GDP growth," Economic Modelling, Elsevier, vol. 75(C), pages 221-236.
  29. Igor Mladenović & Miloš Milovančević & Svetlana Sokolov-Mladenović, 2017. "RETRACTED ARTICLE: Analyzing of innovations influence on economic growth by fuzzy system," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(3), pages 1297-1304, May.
  30. repec:dau:papers:123456789/15246 is not listed on IDEAS
  31. Maksimović, Goran & Jović, Srđan & Jovanović, Radomir, 2017. "Economic growth rate management by soft computing approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 520-524.
  32. Mahmut Gunay, 2020. "Nowcasting Turkish GDP with MIDAS: Role of Functional Form of the Lag Polynomial," Working Papers 2002, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
  33. Holmberg, Johan, 2021. "Earnings and Employment Dynamics: Capturing Cyclicality using Mixed Frequency Data," Umeå Economic Studies 991, Umeå University, Department of Economics.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.