IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v38y2010i3p1529-1536.html
   My bibliography  Save this item

An adaptive network-based fuzzy inference system for short-term natural gas demand estimation: Uncertain and complex environments

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Konstantinos Papageorgiou & Elpiniki I. Papageorgiou & Katarzyna Poczeta & Dionysis Bochtis & George Stamoulis, 2020. "Forecasting of Day-Ahead Natural Gas Consumption Demand in Greece Using Adaptive Neuro-Fuzzy Inference System," Energies, MDPI, vol. 13(9), pages 1-32, May.
  2. Jean Gaston Tamba & Salom Ndjakomo Essiane & Emmanuel Flavian Sapnken & Francis Djanna Koffi & Jean Luc Nsouand l & Bozidar Soldo & Donatien Njomo, 2018. "Forecasting Natural Gas: A Literature Survey," International Journal of Energy Economics and Policy, Econjournals, vol. 8(3), pages 216-249.
  3. Liyang Tang, 2020. "Application of Nonlinear Autoregressive with Exogenous Input (NARX) neural network in macroeconomic forecasting, national goal setting and global competitiveness assessment," Papers 2005.08735, arXiv.org.
  4. Hossein Iranmanesh & Majid Abdollahzade & Arash Miranian, 2011. "Mid-Term Energy Demand Forecasting by Hybrid Neuro-Fuzzy Models," Energies, MDPI, vol. 5(1), pages 1-21, December.
  5. Sen, Doruk & Günay, M. Erdem & Tunç, K.M. Murat, 2019. "Forecasting annual natural gas consumption using socio-economic indicators for making future policies," Energy, Elsevier, vol. 173(C), pages 1106-1118.
  6. Safarian, Sahar & Saboohi, Yadollah & Kateb, Movaffaq, 2013. "Evaluation of energy recovery and potential of hydrogen production in Iranian natural gas transmission network," Energy Policy, Elsevier, vol. 61(C), pages 65-77.
  7. Mir Hossein Mousavi, 2015. "An Estimation of Natural Gas Demand in Household Sector of Iran; the Structural Time Series Approach," Proceedings of International Academic Conferences 2804383, International Institute of Social and Economic Sciences.
  8. Soldo, Božidar, 2012. "Forecasting natural gas consumption," Applied Energy, Elsevier, vol. 92(C), pages 26-37.
  9. Zha, Wenshu & Liu, Yuping & Wan, Yujin & Luo, Ruilan & Li, Daolun & Yang, Shan & Xu, Yanmei, 2022. "Forecasting monthly gas field production based on the CNN-LSTM model," Energy, Elsevier, vol. 260(C).
  10. Athanasios Anagnostis & Elpiniki Papageorgiou & Dionysis Bochtis, 2020. "Application of Artificial Neural Networks for Natural Gas Consumption Forecasting," Sustainability, MDPI, vol. 12(16), pages 1-29, August.
  11. Sun, Mei & Zhang, Pei-Pei & Shan, Tian-Hua & Fang, Cui-Cui & Wang, Xiao-Fang & Tian, Li-Xin, 2012. "Research on the evolution model of an energy supply–demand network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(19), pages 4506-4516.
  12. Chansu Lim, 2019. "Estimating Residential and Industrial City Gas Demand Function in the Republic of Korea—A Kalman Filter Application," Sustainability, MDPI, vol. 11(5), pages 1-12, March.
  13. Panapakidis, Ioannis P. & Dagoumas, Athanasios S., 2017. "Day-ahead natural gas demand forecasting based on the combination of wavelet transform and ANFIS/genetic algorithm/neural network model," Energy, Elsevier, vol. 118(C), pages 231-245.
  14. Azadeh, A. & Faiz, Z.S. & Asadzadeh, S.M. & Tavakkoli-Moghaddam, R., 2011. "An integrated artificial neural network-computer simulation for optimization of complex tandem queue systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(4), pages 666-678.
  15. Rehman, Aniqa & Zhu, Jun-Jie & Segovia, Javier & Anderson, Paul R., 2022. "Assessment of deep learning and classical statistical methods on forecasting hourly natural gas demand at multiple sites in Spain," Energy, Elsevier, vol. 244(PA).
  16. Potočnik, Primož & Soldo, Božidar & Šimunović, Goran & Šarić, Tomislav & Jeromen, Andrej & Govekar, Edvard, 2014. "Comparison of static and adaptive models for short-term residential natural gas forecasting in Croatia," Applied Energy, Elsevier, vol. 129(C), pages 94-103.
  17. Azadeh, A. & Babazadeh, R. & Asadzadeh, S.M., 2013. "Optimum estimation and forecasting of renewable energy consumption by artificial neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 605-612.
  18. Sun, Mei & Wang, Xiaofang & Chen, Ying & Tian, Lixin, 2011. "Energy resources demand-supply system analysis and empirical research based on non-linear approach," Energy, Elsevier, vol. 36(9), pages 5460-5465.
  19. Wang, Jianzhou & Jiang, Haiyan & Zhou, Qingping & Wu, Jie & Qin, Shanshan, 2016. "China’s natural gas production and consumption analysis based on the multicycle Hubbert model and rolling Grey model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1149-1167.
  20. Guo-Feng Fan & An Wang & Wei-Chiang Hong, 2018. "Combining Grey Model and Self-Adapting Intelligent Grey Model with Genetic Algorithm and Annual Share Changes in Natural Gas Demand Forecasting," Energies, MDPI, vol. 11(7), pages 1-21, June.
  21. Yu, Feng & Xu, Xiaozhong, 2014. "A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network," Applied Energy, Elsevier, vol. 134(C), pages 102-113.
  22. E, Jianwei & Ye, Jimin & He, Lulu & Jin, Haihong, 2019. "Energy price prediction based on independent component analysis and gated recurrent unit neural network," Energy, Elsevier, vol. 189(C).
  23. Askari, S. & Montazerin, N. & Fazel Zarandi, M.H., 2016. "Gas networks simulation from disaggregation of low frequency nodal gas consumption," Energy, Elsevier, vol. 112(C), pages 1286-1298.
  24. Ahmadian Behrooz, Hesam & Boozarjomehry, R. Bozorgmehry, 2017. "Dynamic optimization of natural gas networks under customer demand uncertainties," Energy, Elsevier, vol. 134(C), pages 968-983.
  25. Li, Fengyun & Zheng, Haofeng & Li, Xingmei & Yang, Fei, 2021. "Day-ahead city natural gas load forecasting based on decomposition-fusion technique and diversified ensemble learning model," Applied Energy, Elsevier, vol. 303(C).
  26. Azadeh, A. & Asadzadeh, S.M. & Saberi, M. & Nadimi, V. & Tajvidi, A. & Sheikalishahi, M., 2011. "A Neuro-fuzzy-stochastic frontier analysis approach for long-term natural gas consumption forecasting and behavior analysis: The cases of Bahrain, Saudi Arabia, Syria, and UAE," Applied Energy, Elsevier, vol. 88(11), pages 3850-3859.
  27. Zhu, L. & Li, M.S. & Wu, Q.H. & Jiang, L., 2015. "Short-term natural gas demand prediction based on support vector regression with false neighbours filtered," Energy, Elsevier, vol. 80(C), pages 428-436.
  28. Azadeh, A. & Asadzadeh, S.M. & Mirseraji, G.H. & Saberi, M., 2015. "An emotional learning-neuro-fuzzy inference approach for optimum training and forecasting of gas consumption estimation models with cognitive data," Technological Forecasting and Social Change, Elsevier, vol. 91(C), pages 47-63.
  29. Mustafa Akpinar & M. Fatih Adak & Nejat Yumusak, 2017. "Day-Ahead Natural Gas Demand Forecasting Using Optimized ABC-Based Neural Network with Sliding Window Technique: The Case Study of Regional Basis in Turkey," Energies, MDPI, vol. 10(6), pages 1-20, June.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.