IDEAS home Printed from https://ideas.repec.org/r/eee/ejores/v123y2000i2p315-324.html
   My bibliography  Save this item

A directed hypergraph model for random time dependent shortest paths

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Du, Lili & Han, Lanshan & Li, Xiang-Yang, 2014. "Distributed coordinated in-vehicle online routing using mixed-strategy congestion game," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 1-17.
  2. Valentina Trozzi & Guido Gentile & Ioannis Kaparias & Michael Bell, 2015. "Effects of Countdown Displays in Public Transport Route Choice Under Severe Overcrowding," Networks and Spatial Economics, Springer, vol. 15(3), pages 823-842, September.
  3. Prakash, A. Arun, 2018. "Pruning algorithm for the least expected travel time path on stochastic and time-dependent networks," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 127-147.
  4. Gao, Song & Chabini, Ismail, 2006. "Optimal routing policy problems in stochastic time-dependent networks," Transportation Research Part B: Methodological, Elsevier, vol. 40(2), pages 93-122, February.
  5. A. Arun Prakash & Karthik K. Srinivasan, 2017. "Finding the Most Reliable Strategy on Stochastic and Time-Dependent Transportation Networks: A Hypergraph Based Formulation," Networks and Spatial Economics, Springer, vol. 17(3), pages 809-840, September.
  6. Tsung-Sheng Chang & Linda K. Nozick & Mark A. Turnquist, 2005. "Multiobjective Path Finding in Stochastic Dynamic Networks, with Application to Routing Hazardous Materials Shipments," Transportation Science, INFORMS, vol. 39(3), pages 383-399, August.
  7. He Huang & Song Gao, 2018. "Trajectory-Adaptive Routing in Dynamic Networks with Dependent Random Link Travel Times," Transportation Science, INFORMS, vol. 52(1), pages 102-117, January.
  8. Arun Prakash, A., 2020. "Algorithms for most reliable routes on stochastic and time-dependent networks," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 202-220.
  9. Nielsen, Lars Relund & Andersen, Kim Allan & Pretolani, Daniele, 2014. "Ranking paths in stochastic time-dependent networks," European Journal of Operational Research, Elsevier, vol. 236(3), pages 903-914.
  10. Madhushini Narayana Prasad & Nedialko Dimitrov & Evdokia Nikolova, 2023. "Non-Aggressive Adaptive Routing in Traffic," Mathematics, MDPI, vol. 11(17), pages 1-25, August.
  11. Nielsen, Lars Relund & Pretolani, Daniele & Andersen, Kim Allan, 2004. "Finding the K shortest hyperpaths using reoptimization," CORAL Working Papers L-2004-04, University of Aarhus, Aarhus School of Business, Department of Business Studies.
  12. Bell, Michael G.H. & Trozzi, Valentina & Hosseinloo, Solmaz Haji & Gentile, Guido & Fonzone, Achille, 2012. "Time-dependent Hyperstar algorithm for robust vehicle navigation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 790-800.
  13. Nielsen, Lars Relund & Andersen, Kim Allan & Pretolani, Daniele, 2006. "Bicriterion a priori route choice in stochastic time-dependent networks," CORAL Working Papers L-2006-10, University of Aarhus, Aarhus School of Business, Department of Business Studies.
  14. Wen, Liang & Çatay, Bülent & Eglese, Richard, 2014. "Finding a minimum cost path between a pair of nodes in a time-varying road network with a congestion charge," European Journal of Operational Research, Elsevier, vol. 236(3), pages 915-923.
  15. Nielsen, Lars Relund & Kristensen, Anders Ringgaard, 2006. "Finding the K best policies in a finite-horizon Markov decision process," European Journal of Operational Research, Elsevier, vol. 175(2), pages 1164-1179, December.
  16. Ehsan Jafari & Stephen D. Boyles, 2017. "Multicriteria Stochastic Shortest Path Problem for Electric Vehicles," Networks and Spatial Economics, Springer, vol. 17(3), pages 1043-1070, September.
  17. Opasanon, Sathaporn & Miller-Hooks, Elise, 2006. "Multicriteria adaptive paths in stochastic, time-varying networks," European Journal of Operational Research, Elsevier, vol. 173(1), pages 72-91, August.
  18. Tan, K.C. & Chew, Y.H. & Lee, L.H., 2006. "A hybrid multi-objective evolutionary algorithm for solving truck and trailer vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 172(3), pages 855-885, August.
  19. Srinivasan, Karthik K. & Prakash, A.A. & Seshadri, Ravi, 2014. "Finding most reliable paths on networks with correlated and shifted log–normal travel times," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 110-128.
  20. Yang, Lixing & Zhou, Xuesong, 2014. "Constraint reformulation and a Lagrangian relaxation-based solution algorithm for a least expected time path problem," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 22-44.
  21. Tarun Rambha & Stephen D. Boyles & S. Travis Waller, 2016. "Adaptive Transit Routing in Stochastic Time-Dependent Networks," Transportation Science, INFORMS, vol. 50(3), pages 1043-1059, August.
  22. A. Arun Prakash & Karthik K. Srinivasan, 2018. "Pruning Algorithms to Determine Reliable Paths on Networks with Random and Correlated Link Travel Times," Transportation Science, INFORMS, vol. 52(1), pages 80-101, January.
  23. Hu, Xiao-Bing & Zhang, Ming-Kong & Zhang, Qi & Liao, Jian-Qin, 2017. "Co-Evolutionary path optimization by Ripple-Spreading algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 411-432.
  24. Nielsen, Lars Relund & Pretolani, Daniele & Andersen, Kim Allan, 2004. "K shortest paths in stochastic time-dependent networks," CORAL Working Papers L-2004-05, University of Aarhus, Aarhus School of Business, Department of Business Studies.
  25. Pretolani, Daniele, 2013. "Finding hypernetworks in directed hypergraphs," European Journal of Operational Research, Elsevier, vol. 230(2), pages 226-230.
  26. Stephen Boyles & S. Waller, 2011. "Optimal Information Location for Adaptive Routing," Networks and Spatial Economics, Springer, vol. 11(2), pages 233-254, June.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.