IDEAS home Printed from https://ideas.repec.org/r/eee/ejores/v107y1998i3p530-541.html
   My bibliography  Save this item

A branch and bound algorithm for mixed zero-one multiple objective linear programming

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Yıldız, Gazi Bilal & Soylu, Banu, 2019. "A multiobjective post-sales guarantee and repair services network design problem," International Journal of Production Economics, Elsevier, vol. 216(C), pages 305-320.
  2. Francis Sourd & Olivier Spanjaard, 2008. "A Multiobjective Branch-and-Bound Framework: Application to the Biobjective Spanning Tree Problem," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 472-484, August.
  3. Resat, Hamdi G. & Turkay, Metin, 2015. "Design and operation of intermodal transportation network in the Marmara region of Turkey," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 83(C), pages 16-33.
  4. Matthias Ehrgott, 2006. "A discussion of scalarization techniques for multiple objective integer programming," Annals of Operations Research, Springer, vol. 147(1), pages 343-360, October.
  5. Thomas Stidsen & Kim Allan Andersen & Bernd Dammann, 2014. "A Branch and Bound Algorithm for a Class of Biobjective Mixed Integer Programs," Management Science, INFORMS, vol. 60(4), pages 1009-1032, April.
  6. Bashir Bashir & Özlem Karsu, 2022. "Solution approaches for equitable multiobjective integer programming problems," Annals of Operations Research, Springer, vol. 311(2), pages 967-995, April.
  7. Tyler Perini & Natashia Boland & Diego Pecin & Martin Savelsbergh, 2020. "A Criterion Space Method for Biobjective Mixed Integer Programming: The Boxed Line Method," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 16-39, January.
  8. Markus Leitner & Ivana Ljubić & Markus Sinnl, 2015. "A Computational Study of Exact Approaches for the Bi-Objective Prize-Collecting Steiner Tree Problem," INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 118-134, February.
  9. Soylu, Banu, 2015. "Heuristic approaches for biobjective mixed 0–1 integer linear programming problems," European Journal of Operational Research, Elsevier, vol. 245(3), pages 690-703.
  10. Przybylski, Anthony & Gandibleux, Xavier, 2017. "Multi-objective branch and bound," European Journal of Operational Research, Elsevier, vol. 260(3), pages 856-872.
  11. De Santis, Marianna & Grani, Giorgio & Palagi, Laura, 2020. "Branching with hyperplanes in the criterion space: The frontier partitioner algorithm for biobjective integer programming," European Journal of Operational Research, Elsevier, vol. 283(1), pages 57-69.
  12. Letchford, Adam N. & Nasiri, Saeideh D., 2015. "The Steiner travelling salesman problem with correlated costs," European Journal of Operational Research, Elsevier, vol. 245(1), pages 62-69.
  13. Filippi, C. & Guastaroba, G. & Speranza, M.G., 2016. "A heuristic framework for the bi-objective enhanced index tracking problem," Omega, Elsevier, vol. 65(C), pages 122-137.
  14. Forget, Nicolas & Gadegaard, Sune Lauth & Nielsen, Lars Relund, 2022. "Warm-starting lower bound set computations for branch-and-bound algorithms for multi objective integer linear programs," European Journal of Operational Research, Elsevier, vol. 302(3), pages 909-924.
  15. Asmaa Khoudi & Ali Berrichi, 2020. "Minimize total tardiness and machine unavailability on single machine scheduling problem: bi-objective branch and bound algorithm," Operational Research, Springer, vol. 20(3), pages 1763-1789, September.
  16. Sophie N. Parragh & Fabien Tricoire, 2019. "Branch-and-Bound for Bi-objective Integer Programming," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 805-822, October.
  17. Sune Lauth Gadegaard & Lars Relund Nielsen & Matthias Ehrgott, 2019. "Bi-objective Branch-and-Cut Algorithms Based on LP Relaxation and Bound Sets," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 790-804, October.
  18. Konur, Dinçer & Campbell, James F. & Monfared, Sepideh A., 2017. "Economic and environmental considerations in a stochastic inventory control model with order splitting under different delivery schedules among suppliers," Omega, Elsevier, vol. 71(C), pages 46-65.
  19. Florios, Kostas & Mavrotas, George & Diakoulaki, Danae, 2010. "Solving multiobjective, multiconstraint knapsack problems using mathematical programming and evolutionary algorithms," European Journal of Operational Research, Elsevier, vol. 203(1), pages 14-21, May.
  20. Di Martinelly, Christine & Meskens, Nadine, 2017. "A bi-objective integrated approach to building surgical teams and nurse schedule rosters to maximise surgical team affinities and minimise nurses' idle time," International Journal of Production Economics, Elsevier, vol. 191(C), pages 323-334.
  21. David Bergman & Merve Bodur & Carlos Cardonha & Andre A. Cire, 2022. "Network Models for Multiobjective Discrete Optimization," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 990-1005, March.
  22. Ted Ralphs & Matthew Saltzman & Margaret Wiecek, 2006. "An improved algorithm for solving biobjective integer programs," Annals of Operations Research, Springer, vol. 147(1), pages 43-70, October.
  23. Przybylski, Anthony & Gandibleux, Xavier & Ehrgott, Matthias, 2008. "Two phase algorithms for the bi-objective assignment problem," European Journal of Operational Research, Elsevier, vol. 185(2), pages 509-533, March.
  24. Mavrotas, George & Florios, Kostas & Figueira, José Rui, 2015. "An improved version of a core based algorithm for the multi-objective multi-dimensional knapsack problem: A computational study and comparison with meta-heuristics," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 25-43.
  25. Atashpaz Gargari, Masoud & Sahraeian, Rashed, 2023. "An exact criterion space search method for a bi-objective nursing home location and allocation problem," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 166-180.
  26. Hongming Li & Xintao Li, 2022. "A Branch-and-Bound Algorithm for the Bi-Objective Quay Crane Scheduling Problem Based on Efficiency and Energy," Mathematics, MDPI, vol. 10(24), pages 1-20, December.
  27. Sylva, John & Crema, Alejandro, 2007. "A method for finding well-dispersed subsets of non-dominated vectors for multiple objective mixed integer linear programs," European Journal of Operational Research, Elsevier, vol. 180(3), pages 1011-1027, August.
  28. Nicolas Jozefowiez & Gilbert Laporte & Frédéric Semet, 2012. "A Generic Branch-and-Cut Algorithm for Multiobjective Optimization Problems: Application to the Multilabel Traveling Salesman Problem," INFORMS Journal on Computing, INFORMS, vol. 24(4), pages 554-564, November.
  29. Alves, Maria Joao & Climaco, Joao, 2007. "A review of interactive methods for multiobjective integer and mixed-integer programming," European Journal of Operational Research, Elsevier, vol. 180(1), pages 99-115, July.
  30. Ellen De Schepper & Steven Van Passel & Sebastien Lizin & Thomas Vincent & Benjamin Martin & Xavier Gandibleux, 2016. "Economic and environmental multi-objective optimisation to evaluate the impact of Belgian policy on solar power and electric vehicles," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 5(1), pages 1-27, March.
  31. Ozgu Turgut & Evrim Dalkiran & Alper E. Murat, 2019. "An exact parallel objective space decomposition algorithm for solving multi-objective integer programming problems," Journal of Global Optimization, Springer, vol. 75(1), pages 35-62, September.
  32. Barbati, Maria & Greco, Salvatore & Kadziński, Miłosz & Słowiński, Roman, 2018. "Optimization of multiple satisfaction levels in portfolio decision analysis," Omega, Elsevier, vol. 78(C), pages 192-204.
  33. Soylu, Banu, 2018. "The search-and-remove algorithm for biobjective mixed-integer linear programming problems," European Journal of Operational Research, Elsevier, vol. 268(1), pages 281-299.
  34. Jamain, Florian, 2014. "Représentations discrètes de l'ensemble des points non dominés pour des problèmes d'optimisation multi-objectifs," Economics Thesis from University Paris Dauphine, Paris Dauphine University, number 123456789/14002 edited by Bazgan, Cristina.
  35. Mavrotas, George & Figueira, José Rui & Florios, Kostas, 2009. "Solving the bi-objective multidimensional knapsack problem exploiting the concept of core," MPRA Paper 105087, University Library of Munich, Germany.
  36. S. Razavyan, 2016. "A Method for Generating a Well-Distributed Pareto Set in Multiple Objective Mixed Integer Linear Programs Based on the Decision Maker’s Initial Aspiration Level," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(04), pages 1-23, August.
  37. Guillermo Cabrera-Guerrero & Matthias Ehrgott & Andrew J. Mason & Andrea Raith, 2022. "Bi-objective optimisation over a set of convex sub-problems," Annals of Operations Research, Springer, vol. 319(2), pages 1507-1532, December.
  38. George Mavrotas & José Figueira & Alexandros Antoniadis, 2011. "Using the idea of expanded core for the exact solution of bi-objective multi-dimensional knapsack problems," Journal of Global Optimization, Springer, vol. 49(4), pages 589-606, April.
  39. Dinçer Konur & Hadi Farhangi & Cihan H. Dagli, 2016. "A multi-objective military system of systems architecting problem with inflexible and flexible systems: formulation and solution methods," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(4), pages 967-1006, October.
  40. Natashia Boland & Hadi Charkhgard & Martin Savelsbergh, 2015. "A Criterion Space Search Algorithm for Biobjective Mixed Integer Programming: The Triangle Splitting Method," INFORMS Journal on Computing, INFORMS, vol. 27(4), pages 597-618, November.
  41. Juan Villegas & Fernando Palacios & Andrés Medaglia, 2006. "Solution methods for the bi-objective (cost-coverage) unconstrained facility location problem with an illustrative example," Annals of Operations Research, Springer, vol. 147(1), pages 109-141, October.
  42. Barbati, Maria & Corrente, Salvatore & Greco, Salvatore, 2020. "A general space-time model for combinatorial optimization problems (and not only)," Omega, Elsevier, vol. 96(C).
  43. Rong, Aiying & Figueira, José Rui & Lahdelma, Risto, 2015. "A two phase approach for the bi-objective non-convex combined heat and power production planning problem," European Journal of Operational Research, Elsevier, vol. 245(1), pages 296-308.
  44. Esmaeili, Somayeh & Bashiri, Mahdi & Amiri, Amirhossein, 2023. "An exact criterion space search algorithm for a bi-objective blood collection problem," European Journal of Operational Research, Elsevier, vol. 311(1), pages 210-232.
  45. Daniel Jornada & V. Jorge Leon, 2020. "Filtering Algorithms for Biobjective Mixed Binary Linear Optimization Problems with a Multiple-Choice Constraint," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 57-73, January.
  46. Cacchiani, Valentina & D’Ambrosio, Claudia, 2017. "A branch-and-bound based heuristic algorithm for convex multi-objective MINLPs," European Journal of Operational Research, Elsevier, vol. 260(3), pages 920-933.
  47. Holzmann, Tim & Smith, J.C., 2018. "Solving discrete multi-objective optimization problems using modified augmented weighted Tchebychev scalarizations," European Journal of Operational Research, Elsevier, vol. 271(2), pages 436-449.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.