IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v179y2016icp1251-1268.html
   My bibliography  Save this item

Monitoring and diagnosis of energy consumption in wastewater treatment plants. A state of the art and proposals for improvement

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Luo, Li & Dzakpasu, Mawuli & Yang, Baichuan & Zhang, Wushou & Yang, Yahong & Wang, Xiaochang C., 2019. "A novel index of total oxygen demand for the comprehensive evaluation of energy consumption for urban wastewater treatment," Applied Energy, Elsevier, vol. 236(C), pages 253-261.
  2. Bey, M. & Hamidat, A. & Nacer, T., 2021. "Eco-energetic feasibility study of using grid-connected photovoltaic system in wastewater treatment plant," Energy, Elsevier, vol. 216(C).
  3. Kirchem, Dana & Lynch, Muireann Á. & Bertsch, Valentin & Casey, Eoin, 2020. "Modelling demand response with process models and energy systems models: Potential applications for wastewater treatment within the energy-water nexus," Applied Energy, Elsevier, vol. 260(C).
  4. Odabaş Baş, Gözde & Aydınalp Köksal, Merih, 2022. "Environmental and techno-economic analysis of the integration of biogas and solar power systems into urban wastewater treatment plants," Renewable Energy, Elsevier, vol. 196(C), pages 579-597.
  5. Cardoso, Bruno J. & Amaral, Ana R. & Gaspar, Adélio R. & Gomes, Álvaro, 2023. "Exploring energy efficiency barriers and drivers In the Portuguese water sector," Energy, Elsevier, vol. 284(C).
  6. Krzysztof Gaska & Agnieszka Generowicz, 2020. "SMART Computational Solutions for the Optimization of Selected Technology Processes as an Innovation and Progress in Improving Energy Efficiency of Smart Cities—A Case Study," Energies, MDPI, vol. 13(13), pages 1-41, June.
  7. Rosa M. Llácer-Iglesias & P. Amparo López-Jiménez & Modesto Pérez-Sánchez, 2021. "Energy Self-Sufficiency Aiming for Sustainable Wastewater Systems: Are All Options Being Explored?," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
  8. Magdalena Budych-Gorzna & Beata Szatkowska & Lukasz Jaroszynski & Bjarne Paulsrud & Ewelina Jankowska & Tymoteusz Jaroszynski & Piotr Oleskowicz-Popiel, 2021. "Towards an Energy Self-Sufficient Resource Recovery Facility by Improving Energy and Economic Balance of a Municipal WWTP with Chemically Enhanced Primary Treatment," Energies, MDPI, vol. 14(5), pages 1-17, March.
  9. Brok, Niclas Brabrand & Munk-Nielsen, Thomas & Madsen, Henrik & Stentoft, Peter A., 2020. "Unlocking energy flexibility of municipal wastewater aeration using predictive control to exploit price differences in power markets," Applied Energy, Elsevier, vol. 280(C).
  10. Macintosh, C. & Astals, S. & Sembera, C. & Ertl, A. & Drewes, J.E. & Jensen, P.D. & Koch, K., 2019. "Successful strategies for increasing energy self-sufficiency at Grüneck wastewater treatment plant in Germany by food waste co-digestion and improved aeration," Applied Energy, Elsevier, vol. 242(C), pages 797-808.
  11. Adam Masłoń & Joanna Czarnota & Paulina Szczyrba & Aleksandra Szaja & Joanna Szulżyk-Cieplak & Grzegorz Łagód, 2024. "Assessment of Energy Self-Sufficiency of Wastewater Treatment Plants—A Case Study from Poland," Energies, MDPI, vol. 17(5), pages 1-19, March.
  12. Kirchem, Dana & Lynch, Muireann Á & Casey, Eoin & Bertsch, Valentin, 2019. "Demand response within the energy-for-water-nexus: A review," Papers WP637, Economic and Social Research Institute (ESRI).
  13. Radini, Serena & Marinelli, Enrico & Akyol, Çağrı & Eusebi, Anna Laura & Vasilaki, Vasileia & Mancini, Adriano & Frontoni, Emanuele & Bischetti, Gian Battista & Gandolfi, Claudio & Katsou, Evina & Fat, 2021. "Urban water-energy-food-climate nexus in integrated wastewater and reuse systems: Cyber-physical framework and innovations," Applied Energy, Elsevier, vol. 298(C).
  14. Gu, Yifan & Li, Yue & Li, Xuyao & Luo, Pengzhou & Wang, Hongtao & Robinson, Zoe P. & Wang, Xin & Wu, Jiang & Li, Fengting, 2017. "The feasibility and challenges of energy self-sufficient wastewater treatment plants," Applied Energy, Elsevier, vol. 204(C), pages 1463-1475.
  15. Beata Karolinczak & Wojciech Dąbrowski & Radosław Żyłka, 2021. "Evaluation of Dairy Wastewater Treatment Systems Using Carbon Footprint Analysis," Energies, MDPI, vol. 14(17), pages 1-10, August.
  16. Adam Masłoń & Joanna Czarnota & Aleksandra Szaja & Joanna Szulżyk-Cieplak & Grzegorz Łagód, 2020. "The Enhancement of Energy Efficiency in a Wastewater Treatment Plant through Sustainable Biogas Use: Case Study from Poland," Energies, MDPI, vol. 13(22), pages 1-21, November.
  17. Micari, M. & Cipollina, A. & Tamburini, A. & Moser, M. & Bertsch, V. & Micale, G., 2019. "Combined membrane and thermal desalination processes for the treatment of ion exchange resins spent brine," Applied Energy, Elsevier, vol. 254(C).
  18. Francesco Calise & Francesco Liberato Cappiello & Massimo Dentice d’Accadia & Alessandra Infante & Maria Vicidomini, 2020. "Modeling of the Anaerobic Digestion of Organic Wastes: Integration of Heat Transfer and Biochemical Aspects," Energies, MDPI, vol. 13(11), pages 1-23, May.
  19. Francesco Calise & Ursula Eicker & Juergen Schumacher & Maria Vicidomini, 2020. "Wastewater Treatment Plant: Modelling and Validation of an Activated Sludge Process," Energies, MDPI, vol. 13(15), pages 1-20, July.
  20. Mehdi Sharif Shourjeh & Przemysław Kowal & Jakub Drewnowski & Bartosz Szeląg & Aleksandra Szaja & Grzegorz Łagód, 2020. "Mutual Interaction between Temperature and DO Set Point on AOB and NOB Activity during Shortcut Nitrification in a Sequencing Batch Reactor in Terms of Energy Consumption Optimization," Energies, MDPI, vol. 13(21), pages 1-21, November.
  21. Liu, Qipeng & Li, Ran & Dereli, Recep Kaan & Flynn, Damian & Casey, Eoin, 2022. "Water resource recovery facilities as potential energy generation units and their dynamic economic dispatch," Applied Energy, Elsevier, vol. 318(C).
  22. Ewelina Płuciennik-Koropczuk & Sylwia Myszograj & Mirosław Mąkowski, 2022. "Reducing CO 2 Emissions from Wastewater Treatment Plants by Utilising Renewable Energy Sources—Case Study," Energies, MDPI, vol. 15(22), pages 1-14, November.
  23. Andrea G. Capodaglio & Gustaf Olsson, 2019. "Energy Issues in Sustainable Urban Wastewater Management: Use, Demand Reduction and Recovery in the Urban Water Cycle," Sustainability, MDPI, vol. 12(1), pages 1-17, December.
  24. Joanna Rodziewicz & Artur Mielcarek & Kamil Bryszewski & Wojciech Janczukowicz & Karolina Kłobukowska, 2022. "Energy Consumption for Nutrient Removal from High-Nitrate and High-Phosphorus Wastewater in Aerobic and Anaerobic Bioelectrochemical Reactors," Energies, MDPI, vol. 15(19), pages 1-15, October.
  25. Lam, Chor-Man & Leng, Ling & Chen, Pi-Cheng & Lee, Po-Heng & Hsu, Shu-Chien, 2017. "Eco-efficiency analysis of non-potable water systems in domestic buildings," Applied Energy, Elsevier, vol. 202(C), pages 293-307.
  26. Catarina Silva & Maria João Rosa, 2021. "A Practical Methodology for Forecasting the Impact of Changes in Influent Loads and Discharge Consents on Average Energy Consumption and Sludge Production by Activated Sludge Wastewater Treatment," Sustainability, MDPI, vol. 13(21), pages 1-11, November.
  27. Huang, Runyao & Shen, Ziheng & Wang, Hongtao & Xu, Jin & Ai, Zisheng & Zheng, Hongyuan & Liu, Runxi, 2021. "Evaluating the energy efficiency of wastewater treatment plants in the Yangtze River Delta: Perspectives on regional discrepancies," Applied Energy, Elsevier, vol. 297(C).
  28. Maktabifard, Mojtaba & Al-Hazmi, Hussein E. & Szulc, Paulina & Mousavizadegan, Mohammad & Xu, Xianbao & Zaborowska, Ewa & Li, Xiang & Mąkinia, Jacek, 2023. "Net-zero carbon condition in wastewater treatment plants: A systematic review of mitigation strategies and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
  29. Daraio, Cinzia & Kerstens, Kristiaan & Nepomuceno, Thyago & Sickles, Robin C., 2019. "Empirical Surveys of Frontier Applications: A Meta-Review," Working Papers 19-005, Rice University, Department of Economics.
  30. Alberto Carotenuto & Simona Di Fraia & Nicola Massarotti & Szymon Sobek & M. Rakib Uddin & Laura Vanoli & Sebastian Werle, 2023. "Sewage Sludge Gasification Process Optimization for Combined Heat and Power Generation," Energies, MDPI, vol. 16(12), pages 1-22, June.
  31. Radosław Żyłka & Wojciech Dąbrowski & Paweł Malinowski & Beata Karolinczak, 2020. "Modeling of Electric Energy Consumption during Dairy Wastewater Treatment Plant Operation," Energies, MDPI, vol. 13(15), pages 1-14, July.
  32. Paulami De & Mrinmoy Majumder, 2020. "Allocation of energy in surface water treatment plants for maximum energy conservation," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(4), pages 3347-3370, April.
  33. Mancini, G. & Luciano, A. & Bolzonella, D. & Fatone, F. & Viotti, P. & Fino, D., 2021. "A water-waste-energy nexus approach to bridge the sustainability gap in landfill-based waste management regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
  34. Benedetti, Miriam & Bonfa', Francesca & Bertini, Ilaria & Introna, Vito & Ubertini, Stefano, 2018. "Explorative study on Compressed Air Systems’ energy efficiency in production and use: First steps towards the creation of a benchmarking system for large and energy-intensive industrial firms," Applied Energy, Elsevier, vol. 227(C), pages 436-448.
  35. Ana Belén Lozano Avilés & Francisco del Cerro Velázquez & Mercedes Llorens Pascual del Riquelme, 2019. "Methodology for Energy Optimization in Wastewater Treatment Plants. Phase I: Control of the Best Operating Conditions," Sustainability, MDPI, vol. 11(14), pages 1-27, July.
  36. Favi, Claudio & Marconi, Marco & Mandolini, Marco & Germani, Michele, 2022. "Sustainable life cycle and energy management of discrete manufacturing plants in the industry 4.0 framework," Applied Energy, Elsevier, vol. 312(C).
  37. Laing, Harry & O'Malley, Chris & Browne, Anthony & Rutherford, Tony & Baines, Tony & Moore, Andrew & Black, Ken & Willis, Mark J., 2022. "Optimisation of energy usage and carbon emissions monitoring using MILP for an advanced anaerobic digester plant," Energy, Elsevier, vol. 256(C).
  38. S. Revollar & R. Vilanova & P. Vega & M. Francisco & M. Meneses, 2020. "Wastewater Treatment Plant Operation: Simple Control Schemes with a Holistic Perspective," Sustainability, MDPI, vol. 12(3), pages 1-28, January.
  39. Goodarzi, Mostafa & Li, Qifeng, 2022. "Evaluate the capacity of electricity-driven water facilities in small communities as virtual energy storage," Applied Energy, Elsevier, vol. 309(C).
  40. Marcin Dębowski & Marcin Zieliński & Marta Kisielewska & Joanna Kazimierowicz, 2020. "Evaluation of Anaerobic Digestion of Dairy Wastewater in an Innovative Multi-Section Horizontal Flow Reactor," Energies, MDPI, vol. 13(9), pages 1-16, May.
  41. Salvatori, Simone & Benedetti, Miriam & Bonfà, Francesca & Introna, Vito & Ubertini, Stefano, 2018. "Inter-sectorial benchmarking of compressed air generation energy performance: Methodology based on real data gathering in large and energy-intensive industrial firms," Applied Energy, Elsevier, vol. 217(C), pages 266-280.
  42. Heidi Fuchs & Prakash Rao, 2021. "Characterizing manufacturing wastewater in the United States for the purpose of analyzing energy requirements for reuse," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1357-1376, October.
  43. Molinos-Senante, Maria & Maziotis, Alexandros, 2022. "Evaluation of energy efficiency of wastewater treatment plants: The influence of the technology and aging factors," Applied Energy, Elsevier, vol. 310(C).
  44. di Bitonto, Luigi & Locaputo, Vito & D'Ambrosio, Valeria & Pastore, Carlo, 2020. "Direct Lewis-Brønsted acid ethanolysis of sewage sludge for production of liquid fuels," Applied Energy, Elsevier, vol. 259(C).
  45. Moazeni, Faegheh & Khazaei, Javad, 2021. "Co-optimization of wastewater treatment plants interconnected with smart grids," Applied Energy, Elsevier, vol. 298(C).
  46. Geng, ZhiQiang & Dong, JunGen & Han, YongMing & Zhu, QunXiong, 2017. "Energy and environment efficiency analysis based on an improved environment DEA cross-model: Case study of complex chemical processes," Applied Energy, Elsevier, vol. 205(C), pages 465-476.
  47. Longo, S. & Mauricio-Iglesias, M. & Soares, A. & Campo, P. & Fatone, F. & Eusebi, A.L. & Akkersdijk, E. & Stefani, L. & Hospido, A., 2019. "ENERWATER – A standard method for assessing and improving the energy efficiency of wastewater treatment plants," Applied Energy, Elsevier, vol. 242(C), pages 897-910.
  48. Wirginia Tomczak & Marek Gryta, 2022. "Energy-Efficient AnMBRs Technology for Treatment of Wastewaters: A Review," Energies, MDPI, vol. 15(14), pages 1-40, July.
  49. Michela Gallo & Desara Malluta & Adriana Del Borghi & Erica Gagliano, 2024. "A Critical Review on Methodologies for the Energy Benchmarking of Wastewater Treatment Plants," Sustainability, MDPI, vol. 16(5), pages 1-18, February.
  50. Velasquez-Orta, Sharon B. & Heidrich, Oliver & Black, Ken & Graham, David, 2018. "Retrofitting options for wastewater networks to achieve climate change reduction targets," Applied Energy, Elsevier, vol. 218(C), pages 430-441.
  51. Guven, Huseyin & Ersahin, Mustafa Evren & Dereli, Recep Kaan & Ozgun, Hale & Isik, Isa & Ozturk, Izzet, 2019. "Energy recovery potential of anaerobic digestion of excess sludge from high-rate activated sludge systems co-treating municipal wastewater and food waste," Energy, Elsevier, vol. 172(C), pages 1027-1036.
  52. Smith, Kate & Liu, Shuming & Liu, Ying & Guo, Shengjie, 2018. "Can China reduce energy for water? A review of energy for urban water supply and wastewater treatment and suggestions for change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 41-58.
  53. Grzegorz Bartnicki & Piotr Ziembicki & Marcin Klimczak & Agnieszka Kalitka, 2022. "The Potential of Heat Recovery from Wastewater Considering the Protection of Wastewater Treatment Plant Technology," Energies, MDPI, vol. 16(1), pages 1-15, December.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.