IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v109y2013icp202-212.html
   My bibliography  Save this item

Experimental investigation of the effects of diesel injection strategy on gasoline/diesel dual-fuel combustion

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Liu, Xinlei & Wang, Hu & Wang, Xiaofeng & Zheng, Zunqing & Yao, Mingfa, 2017. "Experimental and modelling investigations of the diesel surrogate fuels in direct injection compression ignition combustion," Applied Energy, Elsevier, vol. 189(C), pages 187-200.
  2. Fan, Baowei & Pan, Jianfeng & Yang, Wenming & Chen, Wei & Bani, Stephen, 2017. "The influence of injection strategy on mixture formation and combustion process in a direct injection natural gas rotary engine," Applied Energy, Elsevier, vol. 187(C), pages 663-674.
  3. Chen, Guisheng & Di, Lei & Zhang, Quanchang & Zheng, Zunqing & Zhang, Wei, 2015. "Effects of 2,5-dimethylfuran fuel properties coupling with EGR (exhaust gas recirculation) on combustion and emission characteristics in common-rail diesel engines," Energy, Elsevier, vol. 93(P1), pages 284-293.
  4. Gang Wu & Xinyi Zhou & Tie Li, 2019. "Temporal Evolution of Split-Injected Fuel Spray at Elevated Chamber Pressures," Energies, MDPI, vol. 12(22), pages 1-23, November.
  5. Raza, Mohsin & Wang, Hu & Yao, Mingfa, 2019. "Numerical investigation of reactivity controlled compression ignition (RCCI) using different multi-component surrogate combinations of diesel and gasoline," Applied Energy, Elsevier, vol. 242(C), pages 462-479.
  6. Li, Jing & Ling, Xiang & Liu, Deng & Yang, Wenming & Zhou, Dezhi, 2018. "Numerical study on double injection techniques in a gasoline and biodiesel fueled RCCI (reactivity controlled compression ignition) engine," Applied Energy, Elsevier, vol. 211(C), pages 382-392.
  7. Park, Su Han & Shin, Dalho & Park, Jeonghyun, 2016. "Effect of ethanol fraction on the combustion and emission characteristics of a dimethyl ether-ethanol dual-fuel reactivity controlled compression ignition engine," Applied Energy, Elsevier, vol. 182(C), pages 243-252.
  8. Li, Zilong & Zhang, Yaoyuan & Huang, Guan & Zhao, Wenbin & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2020. "Control of intake boundary conditions for enabling clean combustion in variable engine conditions under intelligent charge compression ignition (ICCI) mode," Applied Energy, Elsevier, vol. 274(C).
  9. Song, Kang & Wang, Xinyan & Xie, Hui, 2018. "Trade-off on fuel economy, knock, and combustion stability for a stratified flame-ignited gasoline engine," Applied Energy, Elsevier, vol. 220(C), pages 437-446.
  10. Paykani, Amin & Kakaee, Amir-Hasan & Rahnama, Pourya & Reitz, Rolf D., 2015. "Effects of diesel injection strategy on natural gas/diesel reactivity controlled compression ignition combustion," Energy, Elsevier, vol. 90(P1), pages 814-826.
  11. Liu, Junheng & Wu, Pengcheng & Ji, Qian & Sun, Ping & Wang, Pan & Meng, Zhongwei & Ma, Hongjie, 2022. "Experimental study on effects of pilot injection strategy on combustion and emission characteristics of diesel/methanol dual-fuel engine under low load," Energy, Elsevier, vol. 247(C).
  12. Yang, Hongqiang & Wang, Zhi & Shuai, Shijin & Wang, Jianxin & Xu, Hongming & Wang, Buyu, 2015. "Temporally and spatially distributed combustion in low-octane gasoline multiple premixed compression ignition mode," Applied Energy, Elsevier, vol. 150(C), pages 150-160.
  13. Chao, Yu & Zhi, Wang & Jianxin, Wang, 2014. "Sequenced combustion characteristics, emission and thermal efficiency in gasoline homogeneous charge induced ignition," Applied Energy, Elsevier, vol. 124(C), pages 343-353.
  14. Han, Weiqiang & Li, Bolun & Pan, Suozhu & Lu, Yao & Li, Xin, 2018. "Combined effect of inlet pressure, total cycle energy, and start of injection on low load reactivity controlled compression ignition combustion and emission characteristics in a multi-cylinder heavy-d," Energy, Elsevier, vol. 165(PB), pages 846-858.
  15. Barik, Debabrata & Murugan, S. & Sivaram, N.M. & Baburaj, E. & Shanmuga Sundaram, P., 2017. "Experimental investigation on the behavior of a direct injection diesel engine fueled with Karanja methyl ester-biogas dual fuel at different injection timings," Energy, Elsevier, vol. 118(C), pages 127-138.
  16. Xu, Shijie & Zhong, Shenghui & Pang, Kar Mun & Yu, Senbin & Jangi, Mehdi & Bai, Xue-song, 2020. "Effects of ambient methanol on pollutants formation in dual-fuel spray combustion at varying ambient temperatures: A large-eddy simulation," Applied Energy, Elsevier, vol. 279(C).
  17. Huang, Haozhong & Zhou, Chengzhong & Liu, Qingsheng & Wang, Qingxin & Wang, Xueqiang, 2016. "An experimental study on the combustion and emission characteristics of a diesel engine under low temperature combustion of diesel/gasoline/n-butanol blends," Applied Energy, Elsevier, vol. 170(C), pages 219-231.
  18. Pan, Suozhu & Cai, Kai & Cai, Min & Du, Chenbo & Li, Xin & Han, Weiqiang & Wang, Xin & Liu, Daming & Wei, Jiangjun & Fang, Jia & Bao, Xiuchao, 2021. "Experimental study on the cyclic variations of ethanol/diesel reactivity controlled compression ignition (RCCI) combustion in a heavy-duty diesel engine," Energy, Elsevier, vol. 237(C).
  19. Li, Jing & Yang, Wenming & Zhou, Dezhi, 2017. "Review on the management of RCCI engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 65-79.
  20. Wang, Yang & Wei, Lixia & Yao, Mingfa, 2016. "A theoretical investigation of the effects of the low-temperature reforming products on the combustion of n-heptane in an HCCI engine and a constant volume vessel," Applied Energy, Elsevier, vol. 181(C), pages 132-139.
  21. Poorghasemi, Kamran & Saray, Rahim Khoshbakhti & Ansari, Ehsan & Irdmousa, Behrouz Khoshbakht & Shahbakhti, Mehdi & Naber, Jeffery D., 2017. "Effect of diesel injection strategies on natural gas/diesel RCCI combustion characteristics in a light duty diesel engine," Applied Energy, Elsevier, vol. 199(C), pages 430-446.
  22. Khayum, Naseem & Anbarasu, S. & Murugan, S., 2021. "Optimization of fuel injection parameters and compression ratio of a biogas fueled diesel engine using methyl esters of waste cooking oil as a pilot fuel," Energy, Elsevier, vol. 221(C).
  23. Zhang, F. & Yu, R. & Bai, X.S., 2015. "Effect of split fuel injection on heat release and pollutant emissions in partially premixed combustion of PRF70/air/EGR mixtures," Applied Energy, Elsevier, vol. 149(C), pages 283-296.
  24. Molina, S. & García, A. & Pastor, J.M. & Belarte, E. & Balloul, I., 2015. "Operating range extension of RCCI combustion concept from low to full load in a heavy-duty engine," Applied Energy, Elsevier, vol. 143(C), pages 211-227.
  25. Xinda Zhu & Manu Mannazhi & Natascia Palazzo & Per-Erik Bengtsson & Öivind Andersson, 2020. "High-Speed Imaging of Spray Formation and Combustion in an Optical Engine: Effects of Injector Aging and TPGME as a Fuel Additive," Energies, MDPI, vol. 13(12), pages 1-26, June.
  26. Liu, Junheng & Ma, Haoran & Liang, Wenwen & Yang, Jun & Sun, Ping & Wang, Xidong & Wang, Yongxu & Wang, Pan, 2022. "Experimental investigation on combustion characteristics and influencing factors of PODE/methanol dual-fuel engine," Energy, Elsevier, vol. 260(C).
  27. Jia, Guorui & Wang, Hu & Tong, Laihui & Wang, Xiaofeng & Zheng, Zunqing & Yao, Mingfa, 2017. "Experimental and numerical studies on three gasoline surrogates applied in gasoline compression ignition (GCI) mode," Applied Energy, Elsevier, vol. 192(C), pages 59-70.
  28. Dong, Shijun & Wang, Zhaowen & Yang, Can & Ou, Biao & Lu, Hongguang & Xu, Haocheng & Cheng, Xiaobei, 2018. "Investigations on the effects of fuel stratification on auto-ignition and combustion process of an ethanol/diesel dual-fuel engine," Applied Energy, Elsevier, vol. 230(C), pages 19-30.
  29. Wang, Xinyan & Zhao, Hua & Xie, Hui, 2016. "Effect of dilution strategies and direct injection ratios on stratified flame ignition (SFI) hybrid combustion in a PFI/DI gasoline engine," Applied Energy, Elsevier, vol. 165(C), pages 801-814.
  30. Mahabadipour, Hamidreza & Srinivasan, Kalyan K. & Krishnan, Sundar R., 2017. "A second law-based framework to identify high efficiency pathways in dual fuel low temperature combustion," Applied Energy, Elsevier, vol. 202(C), pages 199-212.
  31. Zheng, Zunqing & Xia, Mingtao & Liu, Haifeng & Wang, Xiaofeng & Yao, Mingfa, 2018. "Experimental study on combustion and emissions of dual fuel RCCI mode fueled with biodiesel/n-butanol, biodiesel/2,5-dimethylfuran and biodiesel/ethanol," Energy, Elsevier, vol. 148(C), pages 824-838.
  32. Guerry, E. Scott & Raihan, Mostafa S. & Srinivasan, Kalyan K. & Krishnan, Sundar R. & Sohail, Aamir, 2016. "Injection timing effects on partially premixed diesel–methane dual fuel low temperature combustion," Applied Energy, Elsevier, vol. 162(C), pages 99-113.
  33. Zhong, Yingzi & Han, Weiqiang & Jin, Chao & Tian, Xiaocong & Liu, Haifeng, 2022. "Study on effects of the hydroxyl group position and carbon chain length on combustion and emission characteristics of Reactivity Controlled Compression Ignition (RCCI) engine fueled with low-carbon st," Energy, Elsevier, vol. 239(PC).
  34. Enrico Mattarelli & Carlo Alberto Rinaldini & Luca Marmorini & Stefano Caprioli & Francesco Legrottaglie & Francesco Scrignoli, 2022. "2-Stroke RCCI Engines for Passenger Cars," Energies, MDPI, vol. 15(3), pages 1-20, February.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.