IDEAS home Printed from https://ideas.repec.org/r/bla/scjsta/v30y2003i2p277-295.html
   My bibliography  Save this item

Integrated OU Processes and Non‐Gaussian OU‐based Stochastic Volatility Models

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Taufer, Emanuele & Leonenko, Nikolai & Bee, Marco, 2011. "Characteristic function estimation of Ornstein-Uhlenbeck-based stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 55(8), pages 2525-2539, August.
  2. Masuda, H. & Yoshida, N., 2005. "Asymptotic expansion for Barndorff-Nielsen and Shephard's stochastic volatility model," Stochastic Processes and their Applications, Elsevier, vol. 115(7), pages 1167-1186, July.
  3. Ewald, Christian & Zou, Yihan, 2021. "Stochastic volatility: A tale of co-jumps, non-normality, GMM and high frequency data," Journal of Empirical Finance, Elsevier, vol. 64(C), pages 37-52.
  4. Aziz Issaka & Indranil SenGupta, 2017. "Analysis of variance based instruments for Ornstein–Uhlenbeck type models: swap and price index," Annals of Finance, Springer, vol. 13(4), pages 401-434, November.
  5. Creal, Drew D., 2008. "Analysis of filtering and smoothing algorithms for Lévy-driven stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2863-2876, February.
  6. Toshiro Watanabe & Kouji Yamamuro, 2010. "Local Subexponentiality and Self-decomposability," Journal of Theoretical Probability, Springer, vol. 23(4), pages 1039-1067, December.
  7. P. Brockwell, 2014. "Recent results in the theory and applications of CARMA processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(4), pages 647-685, August.
  8. A. H. Nzokem, 2022. "Pricing European Options under Stochastic Volatility Models: Case of five-Parameter Variance-Gamma Process," Papers 2201.03378, arXiv.org, revised Jan 2023.
  9. Piergiacomo Sabino & Nicola Cufaro Petroni, 2022. "Fast simulation of tempered stable Ornstein–Uhlenbeck processes," Computational Statistics, Springer, vol. 37(5), pages 2517-2551, November.
  10. Taufer, Emanuele & Leonenko, Nikolai, 2009. "Simulation of Lvy-driven Ornstein-Uhlenbeck processes with given marginal distribution," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2427-2437, April.
  11. Nicola Cufaro Petroni & Piergiacomo Sabino, 2020. "Tempered stable distributions and finite variation Ornstein-Uhlenbeck processes," Papers 2011.09147, arXiv.org.
  12. Dassios, Angelos & Qu, Yan & Zhao, Hongbiao, 2018. "Exact simulation for a class of tempered stable," LSE Research Online Documents on Economics 86981, London School of Economics and Political Science, LSE Library.
  13. Anatoliy Swishchuk, 2013. "Modeling and Pricing of Swaps for Financial and Energy Markets with Stochastic Volatilities," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8660, January.
  14. Anzarut, Michelle & Mena, Ramsés H., 2019. "A Harris process to model stochastic volatility," Econometrics and Statistics, Elsevier, vol. 10(C), pages 151-169.
  15. Gong, Xiaoli & Zhuang, Xintian, 2017. "American option valuation under time changed tempered stable Lévy processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 57-68.
  16. Semere Habtemicael & Musie Ghebremichael & Indranil SenGupta, 2019. "Volatility and Variance Swap Using Superposition of the Barndorff-Nielsen and Shephard type Lévy Processes," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 75-92, June.
  17. Shaliastovich, Ivan & Tauchen, George, 2011. "Pricing of the time-change risks," Journal of Economic Dynamics and Control, Elsevier, vol. 35(6), pages 843-858, June.
  18. Stojanović, Vladica S. & Popović, Biljana Č. & Milovanović, Gradimir V., 2016. "The Split-SV model," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 560-581.
  19. Aubain Hilaire Nzokem, 2023. "Pricing European Options under Stochastic Volatility Models: Case of Five-Parameter Variance-Gamma Process," JRFM, MDPI, vol. 16(1), pages 1-28, January.
  20. Raknerud, Arvid & Skare, Øivind, 2012. "Indirect inference methods for stochastic volatility models based on non-Gaussian Ornstein–Uhlenbeck processes," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3260-3275.
  21. Szczepocki Piotr, 2020. "Application of iterated filtering to stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck process," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 173-187, June.
  22. Lancelot F. James, 2005. "Analysis of a Class of Likelihood Based Continuous Time Stochastic Volatility Models including Ornstein-Uhlenbeck Models in Financial Economics," Papers math/0503055, arXiv.org, revised Aug 2005.
  23. Mario Abundo & Enrica Pirozzi, 2019. "On the Integral of the Fractional Brownian Motion and Some Pseudo-Fractional Gaussian Processes," Mathematics, MDPI, vol. 7(10), pages 1-12, October.
  24. Shu, Yin & Feng, Qianmei & Liu, Hao, 2019. "Using degradation-with-jump measures to estimate life characteristics of lithium-ion battery," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
  25. Semere Habtemicael & Indranil SenGupta, 2016. "Pricing variance and volatility swaps for Barndorff-Nielsen and Shephard process driven financial markets," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 1-35, December.
  26. Shibin Zhang, 2011. "Transition Law-based Simulation of Generalized Inverse Gaussian Ornstein–Uhlenbeck Processes," Methodology and Computing in Applied Probability, Springer, vol. 13(3), pages 619-656, September.
  27. Semere Habtemicael & Indranil Sengupta, 2016. "Pricing Covariance Swaps For Barndorff–Nielsen And Shephard Process Driven Financial Markets," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 11(03), pages 1-32, September.
  28. Emanuele Taufer, 2008. "Characteristic function estimation of non-Gaussian Ornstein-Uhlenbeck processes," DISA Working Papers 0805, Department of Computer and Management Sciences, University of Trento, Italy, revised 07 Jul 2008.
  29. Qu, Yan & Dassios, Angelos & Zhao, Hongbiao, 2021. "Random variate generation for exponential and gamma tilted stable distributions," LSE Research Online Documents on Economics 108593, London School of Economics and Political Science, LSE Library.
  30. Abundo, Mario & Pirozzi, Enrica, 2018. "Integrated stationary Ornstein–Uhlenbeck process, and double integral processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 265-275.
  31. Piergiacomo Sabino, 2020. "Exact Simulation of Variance Gamma related OU processes: Application to the Pricing of Energy Derivatives," Papers 2004.06786, arXiv.org.
  32. Piotr Szczepocki, 2020. "Application of iterated filtering to stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck process," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 173-187, June.
  33. Gong, Yaxian, 2020. "Credit default swap and two-sided moral hazard," Finance Research Letters, Elsevier, vol. 34(C).
  34. He, Yue & Kawai, Reiichiro, 2022. "Super- and subdiffusive positions in fractional Klein–Kramers equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
  35. Gennady Gorin & John J. Vastola & Meichen Fang & Lior Pachter, 2022. "Interpretable and tractable models of transcriptional noise for the rational design of single-molecule quantification experiments," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  36. Ballotta, Laura & Rayée, Grégory, 2022. "Smiles & smirks: Volatility and leverage by jumps," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1145-1161.
  37. Andersson, Patrik & Lagerås, Andreas N., 2013. "Optimal bond portfolios with fixed time to maturity," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 429-438.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.