IDEAS home Printed from https://ideas.repec.org/p/zbw/thkivw/72018.html
   My bibliography  Save this paper

Resilience and Intergenerational Fairness in Collective Defined Contribution Pension Funds

Author

Listed:
  • Goecke, Oskar

Abstract

A pension system is resilient if it able to absorb external (temporal) shocks and if it is able to adapt to (longterm) shifts of the socio-economic environment. Defined benefit (DB) and defined contribution pension plans behave contrastingly with respect to capital market shocks and shifts: while DB-plan benefits are not affected by external shocks they totally lack adaptability with respect to fundamental changes; DC-plans automatically adjust to a changing environment but any external shock has a direct impact on the (expected) pensions. By adding a collective component to DC-plans one can make these collective DC (CDC)-plans shock absorbing - at least to a certain degree. In our CDC pension model we build a collective reserve of assets that serves as a buffer to capital market shocks, e.g. stock market crashes. The idea is to transfer money from the collective reserve to the individual pension accounts whenever capital markets slump and to feed the collective reserve whenever capital market are booming. This mechanism is particular valuable for age cohorts that are close to retirement. It is clear that withdrawing assets from or adding assets to the collective reserve is essentially a transfer of assets between the age cohorts. In our near reality model we investigate the effect of stock market shocks and interest rate (and mortality) shifts on a CDC- pension system. We are particularly interested in the question, to what extend a CDC-pension system is actually able to absorb shocks and whether the intergenerational transfer of assets via the collective reserve can be regarded as fair.

Suggested Citation

  • Goecke, Oskar, 2018. "Resilience and Intergenerational Fairness in Collective Defined Contribution Pension Funds," Forschung am ivwKöln 7/2018, Technische Hochschule Köln – University of Applied Sciences, Institute for Insurance Studies.
  • Handle: RePEc:zbw:thkivw:72018
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/226603/1/forschung-ivw-koeln-2018-07.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Milevsky, Moshe A. & Salisbury, Thomas S., 2015. "Optimal retirement income tontines," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 91-105.
    2. Goecke, Oskar, 2013. "Pension saving schemes with return smoothing mechanism," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 678-689.
    3. Ed Westerhout, 2011. "Intergenerational Risk Sharing in Time-Consistent Funded Pension Schemes," CPB Discussion Paper 176, CPB Netherlands Bureau for Economic Policy Analysis.
    4. Andrew J. G. Cairns & David Blake & Kevin Dowd, 2006. "A Two‐Factor Model for Stochastic Mortality with Parameter Uncertainty: Theory and Calibration," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(4), pages 687-718, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    2. Goecke, Oskar, 2015. "Asset Liability-Management in einem selbstfinanzierenden Pensionsfonds," Forschung am ivwKöln 9/2015, Technische Hochschule Köln – University of Applied Sciences, Institute for Insurance Studies.
    3. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    4. Mercedes Ayuso & Jorge M. Bravo & Robert Holzmann & Edward Palmer, 2021. "Automatic Indexation of the Pension Age to Life Expectancy: When Policy Design Matters," Risks, MDPI, vol. 9(5), pages 1-28, May.
    5. Boonen, Tim J. & De Waegenaere, Anja, 2017. "Intergenerational risk sharing in closing pension funds," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 20-30.
    6. An Chen & Thai Nguyen & Thorsten Sehner, 2022. "Unit-Linked Tontine: Utility-Based Design, Pricing and Performance," Risks, MDPI, vol. 10(4), pages 1-27, April.
    7. Plat, Richard, 2009. "Stochastic portfolio specific mortality and the quantification of mortality basis risk," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 123-132, August.
    8. Patrick Gagliardini & Christian Gouriéroux, 2011. "Approximate Derivative Pricing for Large Classes of Homogeneous Assets with Systematic Risk," Journal of Financial Econometrics, Oxford University Press, vol. 9(2), pages 237-280, Spring.
    9. Jorge Miguel Bravo, 2019. "Funding for longer lives. Retirement wallet and risk-sharing annuities," EKONOMIAZ. Revista vasca de Economía, Gobierno Vasco / Eusko Jaurlaritza / Basque Government, vol. 96(02), pages 268-291.
    10. Kogure Atsuyuki & Fushimi Takahiro, 2018. "A Bayesian Pricing of Longevity Derivatives with Interest Rate Risks," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 12(1), pages 1-30, January.
    11. Li, Han & Hyndman, Rob J., 2021. "Assessing mortality inequality in the U.S.: What can be said about the future?," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 152-162.
    12. Dushi, Irena & Friedberg, Leora & Webb, Tony, 2010. "The impact of aggregate mortality risk on defined benefit pension plans," Journal of Pension Economics and Finance, Cambridge University Press, vol. 9(4), pages 481-503, October.
    13. Li, Johnny Siu-Hang, 2010. "Pricing longevity risk with the parametric bootstrap: A maximum entropy approach," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 176-186, October.
    14. Wang, Suxin & Rong, Ximin & Zhao, Hui, 2019. "Optimal investment and benefit payment strategy under loss aversion for target benefit pension plans," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 205-218.
    15. Leung, Melvern & Li, Youwei & Pantelous, Athanasios A. & Vigne, Samuel A., 2021. "Bayesian Value-at-Risk backtesting: The case of annuity pricing," European Journal of Operational Research, Elsevier, vol. 293(2), pages 786-801.
    16. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," BAFFI CAREFIN Working Papers 1505, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    17. An Chen & Motonobu Kanagawa & Fangyuan Zhang, 2021. "Intergenerational risk sharing in a Defined Contribution pension system: analysis with Bayesian optimization," Papers 2106.13644, arXiv.org, revised Mar 2023.
    18. Date, P. & Mamon, R. & Jalen, L. & Wang, I.C., 2010. "A linear algebraic method for pricing temporary life annuities and insurance policies," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 98-104, August.
    19. Stéphane Loisel, 2010. "Understanding, Modeling and Managing Longevity Risk: Key Issues and Main Challenges," Post-Print hal-00517902, HAL.
    20. Dowd, Kevin & Cairns, Andrew J.G. & Blake, David & Coughlan, Guy D. & Epstein, David & Khalaf-Allah, Marwa, 2010. "Evaluating the goodness of fit of stochastic mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 255-265, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:thkivw:72018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/fwfhkde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.