Advanced Search
MyIDEAS: Login

Smoothed L-estimation of regression function

Contents:

Author Info

  • Tamine, Julien
  • Čížek, Pavel
  • Härdle, Wolfgang

Abstract

The Nadaraya-Watson estimator of regression is known to be highly sensitive to the presence of outliers in the sample. A possible way of robustication consists in using local L-estimates of regression. Whereas the local L-estimation is traditionally done using an empirical conditional distribution function, we propose to use instead a smoothed conditional distribution function. We show that this smoothed L-estimation approach provides computational as well as statistical finite sample improvements. The asymptotic distribution of the estimator is derived under mild Ø-mixing conditions. --

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://econstor.eu/bitstream/10419/65287/1/727091808.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes in its series SFB 373 Discussion Papers with number 2002,88.

as in new window
Length:
Date of creation: 2002
Date of revision:
Handle: RePEc:zbw:sfb373:200288

Contact details of provider:
Postal: Spandauer Str. 1,10178 Berlin
Phone: +49-30-2093-5708
Fax: +49-30-2093-5617
Email:
Web page: http://www.wiwi.hu-berlin.de/
More information through EDIRC

Related research

Keywords: nonparametric regression; L-estimation; smoothed cumulative distribution function;

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Hardle, W., 1992. "Applied Nonparametric Methods," Discussion Paper 1992-6, Tilburg University, Center for Economic Research.
  2. Lucas, Andre, 1995. "An outlier robust unit root test with an application to the extended Nelson-Plosser data," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 153-173.
  3. Pavel Cizek & Wolfgang Härdle, 2005. "Robust estimation of dimension reduction space," SFB 649 Discussion Papers SFB649DP2005-015, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  4. Matthias Fengler & Wolfgang Härdle & Christophe Villa, 2003. "The Dynamics of Implied Volatilities: A Common Principal Components Approach," Review of Derivatives Research, Springer, vol. 6(3), pages 179-202, October.
  5. Shinichi Sakata & Halbert White, 1998. "High Breakdown Point Conditional Dispersion Estimation with Application to S&P 500 Daily Returns Volatility," Econometrica, Econometric Society, vol. 66(3), pages 529-568, May.
  6. Yacine Ait-Sahalia & Andrew W. Lo, 1995. "Nonparametric Estimation of State-Price Densities Implicit in Financial Asset Prices," NBER Working Papers 5351, National Bureau of Economic Research, Inc.
  7. Yacine Ait-Sahalia & Andrew W. Lo, 2000. "Nonparametric Risk Management and Implied Risk Aversion," NBER Working Papers 6130, National Bureau of Economic Research, Inc.
  8. Oliver LINTON, . "Applied nonparametric methods," Statistic und Oekonometrie 9312, Humboldt Universitaet Berlin.
  9. Cizek, P. & Tamine, J. & Härdle, W.K., 2006. "Smoothed L-estimation of Regression Function," Discussion Paper 2006-20, Tilburg University, Center for Economic Research.
  10. Pagan,Adrian & Ullah,Aman, 1999. "Nonparametric Econometrics," Cambridge Books, Cambridge University Press, number 9780521355643, October.
  11. Pavel Cizek & Wolfgang Karl Härdle & Rafal Weron, 2005. "Statistical Tools for Finance and Insurance," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook0501.
  12. Michal Benko & Wolfgang Härdle, 2005. "Common Functional Implied Volatility Analysis," SFB 649 Discussion Papers SFB649DP2005-012, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Mia Hubert & Irène Gijbels & Dina Vanpaemel, 2013. "Reducing the mean squared error of quantile-based estimators by smoothing," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer, vol. 22(3), pages 448-465, September.
  2. Tamine, Julien & Čížek, Pavel & Härdle, Wolfgang, 2002. "Smoothed L-estimation of regression function," SFB 373 Discussion Papers 2002,88, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:zbw:sfb373:200288. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.