IDEAS home Printed from https://ideas.repec.org/p/zbw/kitiip/50.html
   My bibliography  Save this paper

Two-stage stochastic program optimizing the total cost of ownership of electric vehicles in commercial fleets

Author

Listed:
  • Schücking, Maximilian
  • Jochem, Patrick

Abstract

The possibility of electric vehicles to technically replace internal combustion engine vehicles and to deliver economic benefits mainly depends on the battery and the charging infrastructure as well as on annual mileage (utilizing the lower variable costs of electric vehicles). Current studies on electric vehicles' total cost of ownership often neglect two important factors that influence the investment decision and operational costs: firstly, the trade-off between battery and charging capacity; secondly the uncertainty in energy consumption. This paper proposes a two-stage stochastic program that minimizes the total cost of ownership of a commercial electric vehicle under uncertain energy consumption and available charging times induced by mobility patterns and outside temperature. The optimization program is solved by sample average approximation based on mobility and temperature scenarios. A hidden Markov model is introduced to predict mobility demand scenarios. Three scenario reduction heuristics are applied to reduce computational effort while keeping a high-quality approximation. The proposed framework is tested in a case study of the home nursing service. The results show the large influence of the uncertain mobility patterns on the optimal solution. In the case study, the total cost of ownership can be reduced by up to 3.9% by including the trade-off between battery and charging capacity. The introduction of variable energy prices can lower energy costs by 31.6% but does not influence the investment decision in this case study. Overall, this study provides valuable insights for real applications to determine the techno-economic optimal electric vehicle and charging infrastructure configuration.

Suggested Citation

  • Schücking, Maximilian & Jochem, Patrick, 2020. "Two-stage stochastic program optimizing the total cost of ownership of electric vehicles in commercial fleets," Working Paper Series in Production and Energy 50, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
  • Handle: RePEc:zbw:kitiip:50
    DOI: 10.5445/IR/1000126399
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/227751/1/1743113706.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.5445/IR/1000126399?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nesbitt, Kevin & Sperling, Daniel, 2001. "Fleet Purchase Behavior: Decision Processes and Implications for New Vehicle Technologies and Fuels," Institute of Transportation Studies, Working Paper Series qt15k63162, Institute of Transportation Studies, UC Davis.
    2. Karlis, Dimitris & Xekalaki, Evdokia, 2003. "Choosing initial values for the EM algorithm for finite mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 577-590, January.
    3. Giampietro, Marta & Guidolin, Massimo & Pedio, Manuela, 2018. "Estimating stochastic discount factor models with hidden regimes: Applications to commodity pricing," European Journal of Operational Research, Elsevier, vol. 265(2), pages 685-702.
    4. Ashlea Bennett Milburn, 2012. "Operations Research Applications in Home Healthcare," International Series in Operations Research & Management Science, in: Randolph Hall (ed.), Handbook of Healthcare System Scheduling, chapter 0, pages 281-302, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schücking, Maximilian & Jochem, Patrick, 2021. "Two-stage stochastic program optimizing the cost of electric vehicles in commercial fleets," Applied Energy, Elsevier, vol. 293(C).
    2. Mesut Yavuz & Ismail Çapar, 2017. "Alternative-Fuel Vehicle Adoption in Service Fleets: Impact Evaluation Through Optimization Modeling," Transportation Science, INFORMS, vol. 51(2), pages 480-493, May.
    3. Adrian O’Hagan & Arthur White, 2019. "Improved model-based clustering performance using Bayesian initialization averaging," Computational Statistics, Springer, vol. 34(1), pages 201-231, March.
    4. Arielle Marks‐Anglin & Chongliang Luo & Jin Piao & Mary Beth Connolly Gibbons & Christopher H. Schmid & Jing Ning & Yong Chen, 2022. "EMBRACE: An EM‐based bias reduction approach through Copas‐model estimation for quantifying the evidence of selective publishing in network meta‐analysis," Biometrics, The International Biometric Society, vol. 78(2), pages 754-765, June.
    5. Kurani, Kenneth S & Miller, Marshall & Sugihara, Claire & Stepnitz, Eli-Alston & Nesbitt, Kevin A, 2023. "Determinants of Medium- and Heavy-Duty Truck Fleet Turnover," Institute of Transportation Studies, Working Paper Series qt20n8n4mb, Institute of Transportation Studies, UC Davis.
    6. Massimo Guidolin & Manuela Pedio, 2018. "Forecasting Commodity Futures Returns: An Economic Value Analysis of Macroeconomic vs. Specific Factors," BAFFI CAREFIN Working Papers 1886, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    7. Pietro Coretto & Christian Hennig, 2010. "A simulation study to compare robust clustering methods based on mixtures," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(2), pages 111-135, September.
    8. Hung Tong & Cristina Tortora, 2022. "Model-based clustering and outlier detection with missing data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(1), pages 5-30, March.
    9. Salvatore Ingrassia & Antonio Punzo & Giorgio Vittadini & Simona Minotti, 2015. "Erratum to: The Generalized Linear Mixed Cluster-Weighted Model," Journal of Classification, Springer;The Classification Society, vol. 32(2), pages 327-355, July.
    10. Paolo Berta & Salvatore Ingrassia & Antonio Punzo & Giorgio Vittadini, 2016. "Multilevel cluster-weighted models for the evaluation of hospitals," METRON, Springer;Sapienza Università di Roma, vol. 74(3), pages 275-292, December.
    11. Nicolas Depraetere & Martina Vandebroek, 2014. "Order selection in finite mixtures of linear regressions," Statistical Papers, Springer, vol. 55(3), pages 871-911, August.
    12. repec:jss:jstsof:28:i04 is not listed on IDEAS
    13. Ingo Kastner & Annalena Becker & Sebastian Bobeth & Ellen Matthies, 2021. "Are Professionals Rationals? How Organizations and Households Make E-Car Investments," Sustainability, MDPI, vol. 13(5), pages 1-19, February.
    14. Koyuncu, Işıl & Yavuz, Mesut, 2019. "Duplicating nodes or arcs in green vehicle routing: A computational comparison of two formulations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 605-623.
    15. Daniela Guericke & Leena Suhl, 2017. "The home health care problem with working regulations," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 977-1010, October.
    16. Saif Eddin Jabari & Nikolaos M. Freris & Deepthi Mary Dilip, 2020. "Sparse Travel Time Estimation from Streaming Data," Transportation Science, INFORMS, vol. 54(1), pages 1-20, January.
    17. Mahdi Teimouri & Saralees Nadarajah, 2022. "Maximum Likelihood Estimation for the Asymmetric Exponential Power Distribution," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 665-692, August.
    18. Papastamoulis, Panagiotis & Martin-Magniette, Marie-Laure & Maugis-Rabusseau, Cathy, 2016. "On the estimation of mixtures of Poisson regression models with large number of components," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 97-106.
    19. Derek S. Young & Xi Chen & Dilrukshi C. Hewage & Ricardo Nilo-Poyanco, 2019. "Finite mixture-of-gamma distributions: estimation, inference, and model-based clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 1053-1082, December.
    20. Kerekes, Monika, 2012. "Growth miracles and failures in a Markov switching classification model of growth," Journal of Development Economics, Elsevier, vol. 98(2), pages 167-177.
    21. Salvatore Ingrassia & Antonio Punzo, 2020. "Cluster Validation for Mixtures of Regressions via the Total Sum of Squares Decomposition," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 526-547, July.

    More about this item

    Keywords

    Battery electric vehicle; Total cost of ownership; Stochastic programming; Hidden Markov model; Scenario reduction;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:kitiip:50. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://www.iip.kit.edu/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.