IDEAS home Printed from https://ideas.repec.org/p/zbw/iwqwdp/112017.html
   My bibliography  Save this paper

Deep learning with long short-term memory networks for financial market predictions

Author

Listed:
  • Fischer, Thomas
  • Krauss, Christopher

Abstract

Long short-term memory (LSTM) networks are a state-of-the-art technique for sequence learning. They are less commonly applied to financial time series predictions, yet inherently suitable for this domain. We deploy LSTM networks for predicting out-of-sample directional movements for the constituent stocks of the S&P 500 from 1992 until 2015. With daily returns of 0.46 percent and a Sharpe Ratio of 5.8 prior to transaction costs, we find LSTM networks to outperform memory-free classification methods, i.e., a random forest (RAF), a deep neural net (DNN), and a logistic regression classifier (LOG). We unveil sources of profitability, thereby shedding light into the black box of artificial neural networks. Specifically, we find one common pattern among the stocks selected for trading - they exhibit high volatility and a short-term reversal return profile. Leveraging these findings, we are able to formalize a rules-based short-term reversal strategy that is able to explain a portion of the returns of the LSTM.

Suggested Citation

  • Fischer, Thomas & Krauss, Christopher, 2017. "Deep learning with long short-term memory networks for financial market predictions," FAU Discussion Papers in Economics 11/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
  • Handle: RePEc:zbw:iwqwdp:112017
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/157808/1/886576210.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," European Journal of Operational Research, Elsevier, vol. 259(2), pages 689-702.
    2. Clegg, Matthew & Krauss, Christopher, 2016. "Pairs trading with partial cointegration," FAU Discussion Papers in Economics 05/2016, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    3. Jacobs, Heiko, 2015. "What explains the dynamics of 100 anomalies?," Journal of Banking & Finance, Elsevier, vol. 57(C), pages 65-85.
    4. Granger, Clive W J, 1993. "Strategies for Modelling Nonlinear Time-Series Relationships," The Economic Record, The Economic Society of Australia, vol. 69(206), pages 233-238, September.
    5. Sermpinis, Georgios & Theofilatos, Konstantinos & Karathanasopoulos, Andreas & Georgopoulos, Efstratios F. & Dunis, Christian, 2013. "Forecasting foreign exchange rates with adaptive neural networks using radial-basis functions and Particle Swarm Optimization," European Journal of Operational Research, Elsevier, vol. 225(3), pages 528-540.
    6. Bali, Turan G. & Cakici, Nusret & Whitelaw, Robert F., 2011. "Maxing out: Stocks as lotteries and the cross-section of expected returns," Journal of Financial Economics, Elsevier, vol. 99(2), pages 427-446, February.
    7. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    8. Joseph E. Engelberg & Adam V. Reed & Matthew C. Ringgenberg, 2018. "Short‐Selling Risk," Journal of Finance, American Finance Association, vol. 73(2), pages 755-786, April.
    9. Huck, Nicolas, 2009. "Pairs selection and outranking: An application to the S&P 100 index," European Journal of Operational Research, Elsevier, vol. 196(2), pages 819-825, July.
    10. Jacobs, Heiko & Weber, Martin, 2015. "On the determinants of pairs trading profitability," Journal of Financial Markets, Elsevier, vol. 23(C), pages 75-97.
    11. Carhart, Mark M, 1997. "On Persistence in Mutual Fund Performance," Journal of Finance, American Finance Association, vol. 52(1), pages 57-82, March.
    12. Jegadeesh, Narasimhan, 1990. "Evidence of Predictable Behavior of Security Returns," Journal of Finance, American Finance Association, vol. 45(3), pages 881-898, July.
    13. Lo, Andrew W & MacKinlay, A Craig, 1990. "When Are Contrarian Profits Due to Stock Market Overreaction?," The Review of Financial Studies, Society for Financial Studies, vol. 3(2), pages 175-205.
    14. Evan Gatev & William N. Goetzmann & K. Geert Rouwenhorst, 2006. "Pairs Trading: Performance of a Relative-Value Arbitrage Rule," The Review of Financial Studies, Society for Financial Studies, vol. 19(3), pages 797-827.
    15. Frazzini, Andrea & Pedersen, Lasse Heje, 2014. "Betting against beta," Journal of Financial Economics, Elsevier, vol. 111(1), pages 1-25.
    16. Harrison Hong & David A. Sraer, 2016. "Speculative Betas," Journal of Finance, American Finance Association, vol. 71(5), pages 2095-2144, October.
    17. Christopher Krauss & Anh Do & Nicolas Huck, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," Post-Print hal-01768895, HAL.
    18. Brian Boyer & Todd Mitton & Keith Vorkink, 2010. "Expected Idiosyncratic Skewness," The Review of Financial Studies, Society for Financial Studies, vol. 23(1), pages 169-202, January.
    19. Bruce N. Lehmann, 1990. "Fads, Martingales, and Market Efficiency," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 105(1), pages 1-28.
    20. Huck, Nicolas, 2010. "Pairs trading and outranking: The multi-step-ahead forecasting case," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1702-1716, December.
    21. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    22. Alok Kumar, 2009. "Who Gambles in the Stock Market?," Journal of Finance, American Finance Association, vol. 64(4), pages 1889-1933, August.
    23. Marco Avellaneda & Jeong-Hyun Lee, 2010. "Statistical arbitrage in the US equities market," Quantitative Finance, Taylor & Francis Journals, vol. 10(7), pages 761-782.
    24. Jegadeesh, Narasimhan & Titman, Sheridan, 1993. "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 48(1), pages 65-91, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Linwei Li & Paul-Amaury Matt & Christian Heumann, 2022. "Forecasting foreign exchange rates with regression networks tuned by Bayesian optimization," Papers 2204.12914, arXiv.org, revised May 2022.
    2. Sima Siami-Namini & Akbar Siami Namin, 2018. "Forecasting Economics and Financial Time Series: ARIMA vs. LSTM," Papers 1803.06386, arXiv.org.
    3. Li, Xingyu & Epureanu, Bogdan I., 2020. "AI-based competition of autonomous vehicle fleets with application to fleet modularity," European Journal of Operational Research, Elsevier, vol. 287(3), pages 856-874.
    4. Dhruhi Sheth & Manan Shah, 2023. "Predicting stock market using machine learning: best and accurate way to know future stock prices," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 1-18, February.
    5. Zihao Zhang & Stefan Zohren & Stephen Roberts, 2018. "DeepLOB: Deep Convolutional Neural Networks for Limit Order Books," Papers 1808.03668, arXiv.org, revised Jan 2020.
    6. Daniel Philps & Artur d'Avila Garcez & Tillman Weyde, 2019. "Making Good on LSTMs' Unfulfilled Promise," Papers 1911.04489, arXiv.org, revised Dec 2019.
    7. Yu-Long Zhou & Ren-Jie Han & Qian Xu & Wei-Ke Zhang, 2018. "Long Short-Term Memory Networks for CSI300 Volatility Prediction with Baidu Search Volume," Papers 1805.11954, arXiv.org.
    8. Ying Wang & Bo Feng & Qing-Song Hua & Li Sun, 2021. "Short-Term Solar Power Forecasting: A Combined Long Short-Term Memory and Gaussian Process Regression Method," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    9. Sang Il Lee & Seong Joon Yoo, 2019. "Multimodal Deep Learning for Finance: Integrating and Forecasting International Stock Markets," Papers 1903.06478, arXiv.org, revised Sep 2019.
    10. Jian Huang & Junyi Chai & Stella Cho, 2020. "Deep learning in finance and banking: A literature review and classification," Frontiers of Business Research in China, Springer, vol. 14(1), pages 1-24, December.
    11. Su, Huai & Zio, Enrico & Zhang, Jinjun & Xu, Mingjing & Li, Xueyi & Zhang, Zongjie, 2019. "A hybrid hourly natural gas demand forecasting method based on the integration of wavelet transform and enhanced Deep-RNN model," Energy, Elsevier, vol. 178(C), pages 585-597.
    12. Sang Il Lee & Seong Joon Yoo, 2017. "Threshold-Based Portfolio: The Role of the Threshold and Its Applications," Papers 1709.09822, arXiv.org, revised Aug 2018.
    13. Daniel Philps & Tillman Weyde & Artur d'Avila Garcez & Roy Batchelor, 2018. "Continual Learning Augmented Investment Decisions," Papers 1812.02340, arXiv.org, revised Jan 2019.
    14. Dionne, Georges & Koumou, Gilles Boevi, 2018. "Machine Learning and Risk Management: SVDD Meets RQE," Working Papers 18-6, HEC Montreal, Canada Research Chair in Risk Management.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
    2. Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
    3. Adam Zaremba & Jacob Koby Shemer, 2018. "Price-Based Investment Strategies," Springer Books, Springer, number 978-3-319-91530-2, December.
    4. Jacobs, Heiko, 2015. "What explains the dynamics of 100 anomalies?," Journal of Banking & Finance, Elsevier, vol. 57(C), pages 65-85.
    5. Krauss, Christopher, 2015. "Statistical arbitrage pairs trading strategies: Review and outlook," FAU Discussion Papers in Economics 09/2015, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    6. Bradrania, Reza & Veron, Jose Francisco, 2023. "The beta anomaly in the Australian stock market and the lottery demand," Pacific-Basin Finance Journal, Elsevier, vol. 77(C).
    7. Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," European Journal of Operational Research, Elsevier, vol. 259(2), pages 689-702.
    8. Huck, Nicolas, 2019. "Large data sets and machine learning: Applications to statistical arbitrage," European Journal of Operational Research, Elsevier, vol. 278(1), pages 330-342.
    9. Thomas Günter Fischer & Christopher Krauss & Alexander Deinert, 2019. "Statistical Arbitrage in Cryptocurrency Markets," JRFM, MDPI, vol. 12(1), pages 1-15, February.
    10. Cakici, Nusret & Zaremba, Adam, 2022. "Salience theory and the cross-section of stock returns: International and further evidence," Journal of Financial Economics, Elsevier, vol. 146(2), pages 689-725.
    11. Knoll, Julian & Stübinger, Johannes & Grottke, Michael, 2017. "Exploiting social media with higher-order Factorization Machines: Statistical arbitrage on high-frequency data of the S&P 500," FAU Discussion Papers in Economics 13/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    12. Rubesam, Alexandre, 2022. "Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market," Emerging Markets Review, Elsevier, vol. 51(PB).
    13. Xiang, Yun & He, Jiaxuan, 2022. "Pairs trading and asset pricing," Pacific-Basin Finance Journal, Elsevier, vol. 72(C).
    14. Matthew Clegg & Christopher Krauss, 2018. "Pairs trading with partial cointegration," Quantitative Finance, Taylor & Francis Journals, vol. 18(1), pages 121-138, January.
    15. Nguyen, Hung T. & Truong, Cameron, 2018. "When are extreme daily returns not lottery? At earnings announcements!," Journal of Financial Markets, Elsevier, vol. 41(C), pages 92-116.
    16. Lin, Mei-Chen & Lin, Yu-Ling, 2021. "Idiosyncratic skewness and cross-section of stock returns: Evidence from Taiwan," International Review of Financial Analysis, Elsevier, vol. 77(C).
    17. Cakici, Nusret & Zaremba, Adam, 2023. "Recency bias and the cross-section of international stock returns," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 84(C).
    18. Keunbae Ahn, 2021. "Predictable Fluctuations in the Cross-Section and Time-Series of Asset Prices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2021.
    19. Zhong, Angel & Gray, Philip, 2016. "The MAX effect: An exploration of risk and mispricing explanations," Journal of Banking & Finance, Elsevier, vol. 65(C), pages 76-90.
    20. Tse-Chun Lin & Xin Liu, 2018. "Skewness, Individual Investor Preference, and the Cross-section of Stock Returns [Illiquidity and stock returns: cross-section and time-series effects]," Review of Finance, European Finance Association, vol. 22(5), pages 1841-1876.

    More about this item

    Keywords

    finance; statistical arbitrage; LSTM; machine learning; deep learning;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:iwqwdp:112017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/vierlde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.