IDEAS home Printed from https://ideas.repec.org/p/zbw/fisisi/s112022.html
   My bibliography  Save this paper

Industrial excess heat and residential heating: Potentials and costs based on different heat transport technologies

Author

Listed:
  • Fritz, Markus
  • Werner, Dorian

Abstract

Using industrial excess heat for residential heating can increase energy efficiency and thus be part of the solution to achieving the EU's climate targets. However, industrial plants are often located in industrial areas and thus away from residential areas. Therefore, the excess heat has to be transported to the end-using households. In this paper, we determine the economic excess heat potential for residential heating in Germany, considering different transport technologies. For this purpose, we develop a bottom-up optimisation model, which identifies the technology with the lowest transport cost for over 6,000 excess heat sources. In addition, an optimisation is carried out to maximise the amount of used excess heat, taking into account cost thresholds. Our results show that about 12-17 TWh of excess heat can be utilised up to the cost threshold of 0.1 €/kWh. We see that district heating is the most selected technology for cost optimisation. When optimising the amount of excess heat used, however, it becomes apparent that the technologies sewer networks and sorption cycles are also used. The technologies for using industrial excess heat are available, but the next step must be market penetration and up-scaling.

Suggested Citation

  • Fritz, Markus & Werner, Dorian, 2022. "Industrial excess heat and residential heating: Potentials and costs based on different heat transport technologies," Working Papers "Sustainability and Innovation" S11/2022, Fraunhofer Institute for Systems and Innovation Research (ISI).
  • Handle: RePEc:zbw:fisisi:s112022
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/265143/1/1817940589.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Markus Fritz & Ali Aydemir & Liselotte Schebek, 2022. "How Much Excess Heat Might Be Used in Buildings? A Spatial Analysis at the Municipal Level in Germany," Energies, MDPI, vol. 15(17), pages 1-17, August.
    2. Lund, H. & Möller, B. & Mathiesen, B.V. & Dyrelund, A., 2010. "The role of district heating in future renewable energy systems," Energy, Elsevier, vol. 35(3), pages 1381-1390.
    3. Kang, Y.T & Akisawa, A & Sambe, Y & Kashiwagi, T, 2000. "Absorption heat pump systems for solution transportation at ambient temperature — STA cycle," Energy, Elsevier, vol. 25(4), pages 355-370.
    4. Xu, Z.Y. & Wang, R.Z. & Yang, Chun, 2019. "Perspectives for low-temperature waste heat recovery," Energy, Elsevier, vol. 176(C), pages 1037-1043.
    5. Rezaie, Behnaz & Rosen, Marc A., 2012. "District heating and cooling: Review of technology and potential enhancements," Applied Energy, Elsevier, vol. 93(C), pages 2-10.
    6. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    7. Werner, Sven, 2017. "International review of district heating and cooling," Energy, Elsevier, vol. 137(C), pages 617-631.
    8. Ma, Q. & Luo, L. & Wang, R.Z. & Sauce, G., 2009. "A review on transportation of heat energy over long distance: Exploratory development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1532-1540, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fritz, M. & Plötz, P. & Schebek, L., 2022. "A technical and economical comparison of excess heat transport technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Kavvadias, Konstantinos C. & Quoilin, Sylvain, 2018. "Exploiting waste heat potential by long distance heat transmission: Design considerations and techno-economic assessment," Applied Energy, Elsevier, vol. 216(C), pages 452-465.
    3. Li, Haoran & Hou, Juan & Hong, Tianzhen & Ding, Yuemin & Nord, Natasa, 2021. "Energy, economic, and environmental analysis of integration of thermal energy storage into district heating systems using waste heat from data centres," Energy, Elsevier, vol. 219(C).
    4. Yuan, Jianjuan & Zhou, Zhihua & Tang, Huajie & Wang, Chendong & Lu, Shilei & Han, Zhao & Zhang, Ji & Sheng, Ying, 2020. "Identification heat user behavior for improving the accuracy of heating load prediction model based on wireless on-off control system," Energy, Elsevier, vol. 199(C).
    5. Xue, Puning & Jiang, Yi & Zhou, Zhigang & Chen, Xin & Fang, Xiumu & Liu, Jing, 2019. "Multi-step ahead forecasting of heat load in district heating systems using machine learning algorithms," Energy, Elsevier, vol. 188(C).
    6. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    7. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
    8. Soheil Kavian & Mohsen Saffari Pour & Ali Hakkaki-Fard, 2019. "Optimized Design of the District Heating System by Considering the Techno-Economic Aspects and Future Weather Projection," Energies, MDPI, vol. 12(9), pages 1-30, May.
    9. Davine N. G. Janssen & Eunice Pereira Ramos & Vincent Linderhof & Nico Polman & Chrysi Laspidou & Dennis Fokkinga & Duarte de Mesquita e Sousa, 2020. "The Climate, Land, Energy, Water and Food Nexus Challenge in a Land Scarce Country: Innovations in the Netherlands," Sustainability, MDPI, vol. 12(24), pages 1-27, December.
    10. Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
    11. Zygmunt Kowalski & Agnieszka Makara, 2022. "Sustainable Systems for the Production of District Heating Using Meat-Bone Meal as Biofuel: A Polish Case Study," Energies, MDPI, vol. 15(10), pages 1-15, May.
    12. Nord, Natasa & Shakerin, Mohammad & Tereshchenko, Tymofii & Verda, Vittorio & Borchiellini, Romano, 2021. "Data informed physical models for district heating grids with distributed heat sources to understand thermal and hydraulic aspects," Energy, Elsevier, vol. 222(C).
    13. Hoofar Hemmatabady & Julian Formhals & Bastian Welsch & Daniel Otto Schulte & Ingo Sass, 2020. "Optimized Layouts of Borehole Thermal Energy Storage Systems in 4th Generation Grids," Energies, MDPI, vol. 13(17), pages 1-26, August.
    14. Alessandro Guzzini & Marco Pellegrini & Edoardo Pelliconi & Cesare Saccani, 2020. "Low Temperature District Heating: An Expert Opinion Survey," Energies, MDPI, vol. 13(4), pages 1-34, February.
    15. Soltero, V.M. & Chacartegui, R. & Ortiz, C. & Velázquez, R., 2016. "Evaluation of the potential of natural gas district heating cogeneration in Spain as a tool for decarbonisation of the economy," Energy, Elsevier, vol. 115(P3), pages 1513-1532.
    16. Lake, Andrew & Rezaie, Behanz & Beyerlein, Steven, 2017. "Review of district heating and cooling systems for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 417-425.
    17. Sommer, Tobias & Sulzer, Matthias & Wetter, Michael & Sotnikov, Artem & Mennel, Stefan & Stettler, Christoph, 2020. "The reservoir network: A new network topology for district heating and cooling," Energy, Elsevier, vol. 199(C).
    18. Sommer, Tobias & Sotnikov, Artem & Sulzer, Matthias & Scholz, Volkher & Mischler, Stefan & Rismanchi, Behzad & Gjoka, Kristian & Mennel, Stefan, 2022. "Hydrothermal challenges in low-temperature networks with distributed heat pumps," Energy, Elsevier, vol. 257(C).
    19. Guelpa, Elisa & Verda, Vittorio, 2020. "Automatic fouling detection in district heating substations: Methodology and tests," Applied Energy, Elsevier, vol. 258(C).
    20. Jie, Pengfei & Kong, Xiangfei & Rong, Xian & Xie, Shangqun, 2016. "Selecting the optimum pressure drop per unit length of district heating piping network based on operating strategies," Applied Energy, Elsevier, vol. 177(C), pages 341-353.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:fisisi:s112022. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/isfhgde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.