IDEAS home Printed from https://ideas.repec.org/p/zbw/cauman/557.html
   My bibliography  Save this paper

Schedulung European soccer leagues: Models, methods, and applications

Author

Listed:
  • Bartsch, Thomas
  • Drexl, Andreas
  • Kröger, Stefan

Abstract

Generating a regular season schedule is a demanding task for any sports league. In Europe, the creation of a suitable schedule for every national top soccer league not only has to address numerous conflicting inner-league requirements and preferences. Additionally, the games of the European Cup matches (Champions League, UEFA Cup, National Cup Winners) have to be taken into account. In this paper we consider the case of Germany and Austria, that is the planning problem the "Deutsche Fußball-Bund" (DFB) and the "Österreichische Fußball-Bund" (ÖFB) are confronted with. For both leagues we develop models and algorithms which yield reasonable schedules quickly. The models borrow their expressive power from so-called partially renewable resources. Our approach generates schedules which have been accepted for play once by the DFB and five times by the ÖFB.

Suggested Citation

  • Bartsch, Thomas & Drexl, Andreas & Kröger, Stefan, 2002. "Schedulung European soccer leagues: Models, methods, and applications," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 557, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
  • Handle: RePEc:zbw:cauman:557
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/147626/1/manuskript_557.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Burke, Edmund Kieran & Petrovic, Sanja, 2002. "Recent research directions in automated timetabling," European Journal of Operational Research, Elsevier, vol. 140(2), pages 266-280, July.
    2. Böttcher, Jan & Drexl, A. & Kolisch, R. & Salewski, F., 1999. "Project scheduling under partially renewable resource constraints," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 345, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    3. Jan Böttcher & Andreas Drexl & Rainer Kolisch & Frank Salewski, 1999. "Project Scheduling Under Partially Renewable Resource Constraints," Management Science, INFORMS, vol. 45(4), pages 543-559, April.
    4. James C. Bean & John R. Birge, 1980. "Reducing Travelling Costs and Player Fatigue in the National Basketball Association," Interfaces, INFORMS, vol. 10(3), pages 98-102, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Drexl, Andreas & Nissen, Rudiger & Patterson, James H. & Salewski, Frank, 2000. "ProGen/[pi]x - An instance generator for resource-constrained project scheduling problems with partially renewable resources and further extensions," European Journal of Operational Research, Elsevier, vol. 125(1), pages 59-72, August.
    2. Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre (Ed.), 2000. "Jahresbericht 1999," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 522, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    3. Hartmann, Sönke & Briskorn, Dirk, 2010. "A survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 1-14, November.
    4. Kai Watermeyer & Jürgen Zimmermann, 2022. "A partition-based branch-and-bound algorithm for the project duration problem with partially renewable resources and general temporal constraints," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(2), pages 575-602, June.
    5. Colvin, Matthew & Maravelias, Christos T., 2011. "R&D pipeline management: Task interdependencies and risk management," European Journal of Operational Research, Elsevier, vol. 215(3), pages 616-628, December.
    6. Kai Watermeyer & Jürgen Zimmermann, 2020. "A branch-and-bound procedure for the resource-constrained project scheduling problem with partially renewable resources and general temporal constraints," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(2), pages 427-460, June.
    7. Chatterjee A K & Mukherjee, Saral, 2006. "Unified Concept of Bottleneck," IIMA Working Papers WP2006-05-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
    8. Zografos, Konstantinos G. & Androutsopoulos, Konstantinos N. & Madas, Michael A., 2018. "Minding the gap: Optimizing airport schedule displacement and acceptability," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PA), pages 203-221.
    9. Hua Wang & Jon Dieringer & Steve Guntz & Shankarraman Vaidyaraman & Shekhar Viswanath & Nikolaos H. Lappas & Sal Garcia-Munoz & Chrysanthos E. Gounaris, 2021. "Portfolio-Wide Optimization of Pharmaceutical R&D Activities Using Mathematical Programming," Interfaces, INFORMS, vol. 51(4), pages 262-279, July.
    10. Dirk Briskorn & Malte Fliedner, 2012. "Packing chained items in aligned bins with applications to container transshipment and project scheduling," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 75(3), pages 305-326, June.
    11. Knust, Sigrid, 2010. "Scheduling non-professional table-tennis leagues," European Journal of Operational Research, Elsevier, vol. 200(2), pages 358-367, January.
    12. Buddhakulsomsiri, Jirachai & Kim, David S., 2007. "Priority rule-based heuristic for multi-mode resource-constrained project scheduling problems with resource vacations and activity splitting," European Journal of Operational Research, Elsevier, vol. 178(2), pages 374-390, April.
    13. Nissen, Rüdiger & Haase, Knut, 2004. "Duty-period-based network model for airline crew rescheduling," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 581, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    14. Lei Lei & Michael Pinedo & Lian Qi & Shengbin Wang & Jian Yang, 2015. "Personnel scheduling and supplies provisioning in emergency relief operations," Annals of Operations Research, Springer, vol. 235(1), pages 487-515, December.
    15. Hartmann, Sönke & Briskorn, Dirk, 2008. "A survey of variants and extensions of the resource-constrained project scheduling problem," Working Paper Series 02/2008, Hamburg School of Business Administration (HSBA).
    16. Bodenstein, Christian & Schryen, Guido & Neumann, Dirk, 2012. "Energy-aware workload management models for operation cost reduction in data centers," European Journal of Operational Research, Elsevier, vol. 222(1), pages 157-167.
    17. Guidong Zhu & Jonathan F. Bard & Gang Yu, 2006. "A Branch-and-Cut Procedure for the Multimode Resource-Constrained Project-Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 18(3), pages 377-390, August.
    18. Alvarez-Valdes, R. & Crespo, E. & Tamarit, J.M. & Villa, F., 2008. "GRASP and path relinking for project scheduling under partially renewable resources," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1153-1170, September.
    19. Jan-Hendrik Bartels & Thorsten Gather & Jürgen Zimmermann, 2011. "Dismantling of nuclear power plants at optimal NPV," Annals of Operations Research, Springer, vol. 186(1), pages 407-427, June.
    20. Schirmer, Andreas & Potzahr, Kathrin, 2001. "Lehrgangsplanung für die Ausbildung von Verkehrsflugzeugführern: Ergebnisse einer Studie bei Lufthansa Flight Training," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 538, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:cauman:557. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/ibkiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.