IDEAS home Printed from https://ideas.repec.org/p/zbw/bclgwp/2.html
   My bibliography  Save this paper

Quantifying the Effects of Additive Manufacturing on Supply Networks by Means of a Facility Location-Allocation Model

Author

Listed:
  • Barz, Andreas
  • Buer, Tobias
  • Haasis, Hans-Dietrich

Abstract

Additive manufacturing (AM), or nonstandard 3D printing, disseminates in more and more production processes. This changes not only the production processes, e.g. subtractive production technologies are replaced, but will in all likelihood impact the configuration of supply networks. Due to a more efficient use of raw materials, transportation relations may change and production sites may be relocated. How this change will look like is part of an ongoing discussion in industry and academia. However, quantitative studies on this question are scarce. In order to quantify the potential impact of AM on a two-stage supply network, we use a facility location model. The impact of AM on the production process is integrated into the model by varying resource efficiency ratios. We create a test data set of 308 instances. Features of this test set are different geographical clusters of source nodes, production nodes, and customers nodes. By means of a computational study, the impact of AM on the supply network structure is measured by four indicators. In the context of our study, AM reduces the overall transportation costs of a supply network. However, the share of the transportation costs on the second stage of a supply network in the total costs increases significantly. Therefore, supply networks in which production sites and customer sites are closely spaced improve their cost effectiveness stronger than other regional configurations of supply networks.

Suggested Citation

  • Barz, Andreas & Buer, Tobias & Haasis, Hans-Dietrich, 2015. "Quantifying the Effects of Additive Manufacturing on Supply Networks by Means of a Facility Location-Allocation Model," Bremen Computational Logistics Group Working Papers 2, University of Bremen, Computational Logistics Junior Research Group.
  • Handle: RePEc:zbw:bclgwp:2
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/142134/1/BCLG-WP2_2015.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Klose, Andreas & Drexl, Andreas, 2005. "Facility location models for distribution system design," European Journal of Operational Research, Elsevier, vol. 162(1), pages 4-29, April.
    2. Christopher Tuck & Richard Hague & Neil Burns, 2007. "Rapid manufacturing: impact on supply chain methodologies and practice," International Journal of Services and Operations Management, Inderscience Enterprises Ltd, vol. 3(1), pages 1-22.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sauvey, Christophe & Melo, Teresa & Correia, Isabel, 2019. "Two-phase heuristics for a multi-period capacitated facility location problem with service-differentiated customers," Technical Reports on Logistics of the Saarland Business School 16, Saarland University of Applied Sciences (htw saar), Saarland Business School.
    2. Zhanwei Tian & Guoqing Zhang, 2021. "Multi-echelon fulfillment warehouse rent and production allocation for online direct selling," Annals of Operations Research, Springer, vol. 304(1), pages 427-451, September.
    3. Ortiz-Astorquiza, Camilo & Contreras, Ivan & Laporte, Gilbert, 2018. "Multi-level facility location problems," European Journal of Operational Research, Elsevier, vol. 267(3), pages 791-805.
    4. Rodolfo Mendoza-Gómez & Roger Z. Ríos-Mercado & Karla B. Valenzuela-Ocaña, 2019. "An Efficient Decision-Making Approach for the Planning of Diagnostic Services in a Segmented Healthcare System," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1631-1665, September.
    5. Delzeit, Ruth & Britz, Wolfgang & Holm-Müller, Karin, 2011. "Modelling regional input markets with numerous processing plants: The case of green maize for biogas production in Germany," Discussion Papers 162892, University of Bonn, Institute for Food and Resource Economics.
    6. Tsekeris, Theodore, 2016. "Interregional trade network analysis for road freight transport in Greece," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 85(C), pages 132-148.
    7. Holzapfel, Andreas & Potoczki, Tobias & Kuhn, Heinrich, 2023. "Designing the breadth and depth of distribution networks in the retail trade," International Journal of Production Economics, Elsevier, vol. 257(C).
    8. Jiwon Baik & Alan T. Murray, 2022. "Locating a facility to simultaneously address access and coverage goals," Papers in Regional Science, Wiley Blackwell, vol. 101(5), pages 1199-1217, October.
    9. Rentizelas, Athanasios A. & Tatsiopoulos, Ilias P., 2010. "Locating a bioenergy facility using a hybrid optimization method," International Journal of Production Economics, Elsevier, vol. 123(1), pages 196-209, January.
    10. Correia, Isabel & Melo, Teresa, 2016. "A computational comparison of formulations for a multi-period facility location problem with modular capacity adjustments and flexible demand fulfillment," Technical Reports on Logistics of the Saarland Business School 11, Saarland University of Applied Sciences (htw saar), Saarland Business School.
    11. Pérez-Mesa, Juan Carlos & Galdeano-Gómez, Emilio & Salinas Andújar, Jose A., 2012. "Logistics network and externalities for short sea transport: An analysis of horticultural exports from southeast Spain," Transport Policy, Elsevier, vol. 24(C), pages 188-198.
    12. Boysen, Ole & Schroeder, Carsten, 2006. "Economies of Scale in der Produktion versus Diseconomies im Transport: Zum Strukturwandel im Molkereisektor," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 55(03), pages 1-16.
    13. Emde, Simon & Boysen, Nils, 2012. "Optimally locating in-house logistics areas to facilitate JIT-supply of mixed-model assembly lines," International Journal of Production Economics, Elsevier, vol. 135(1), pages 393-402.
    14. Sanjay Dominik Jena & Jean-François Cordeau & Bernard Gendron, 2015. "Dynamic Facility Location with Generalized Modular Capacities," Transportation Science, INFORMS, vol. 49(3), pages 484-499, August.
    15. Jesus Gonzalez-Feliu, 2013. "Vehicle Routing in Multi-Echelon Distribution Systems with Cross-Docking: A Systematic Lexical-Metanarrative Analysis," Post-Print halshs-00834573, HAL.
    16. Seyed Hashem Mousavi-Avval & Sami Khanal & Ajay Shah, 2023. "Assessment of Potential Pennycress Availability and Suitable Sites for Sustainable Aviation Fuel Refineries in Ohio," Sustainability, MDPI, vol. 15(13), pages 1-14, July.
    17. Caviggioli, Federico & Ughetto, Elisa, 2019. "A bibliometric analysis of the research dealing with the impact of additive manufacturing on industry, business and society," International Journal of Production Economics, Elsevier, vol. 208(C), pages 254-268.
    18. Clavijo López, Christian & Crama, Yves & Pironet, Thierry & Semet, Frédéric, 2024. "Multi-period distribution networks with purchase commitment contracts," European Journal of Operational Research, Elsevier, vol. 312(2), pages 556-572.
    19. Alain Quilliot & Antoine Sarbinowski & Hélène Toussaint, 2021. "Vehicle driven approaches for non preemptive vehicle relocation with integrated quality criterion in a vehicle sharing system," Annals of Operations Research, Springer, vol. 298(1), pages 445-468, March.
    20. Jaya Priyadarshini & Rajesh Kr Singh & Ruchi Mishra & Surajit Bag, 2022. "Investigating the interaction of factors for implementing additive manufacturing to build an antifragile supply chain: TISM-MICMAC approach," Operations Management Research, Springer, vol. 15(1), pages 567-588, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:bclgwp:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/fwbrede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.