Advanced Search
MyIDEAS: Login

Derivation of robust predictor variables for modelling urban shrinkage and its effects at different scales

Contents:

Author Info

  • Dagmar Haase

    ()

Registered author(s):

    Abstract

    Currently, we observe diverging processes of growth and shrinkage in European Cities. Whereas in the 80ies and 90ies partially accelerated through the crash of the socialist system mostly urban growth and suburban development occurred in European Cities, today we find a general decline of population as well as an increase of aged people (as results of the demographic change in Europe and worldwide, Cloet 2003, Lutz 2001). These processes influence land use pattern (state of the environment) and land use changes in urban areas enormously. Land use pattern reflect the current socio-economic development of an urban area and give an idea of how the urban ecosystem is influenced by man. In doing so, for instance, surface sealing reduces the filtering and remediation capacity of soils and the water retention in general as well as minimises habitat quality for wetland species. At the same time, the ecosystem(s) provide so-called ecosystem services, benefits people obtain from ecosystems: water availability, drinking water, remediation and filtering of waste, places to settle, recreation facilities in nature and others. Their quantification enables to bring the change (availability/loss) of ecosystem services into relation with effective costs (economic sphere, Farber 2002, De Groot et al. 2002). The above mentioned population decline and related shrinkage processes will have enormous consequences on the demand and availability of ecosystem services needed to sustain a high and even increasing status of quality of life for European citizens in the next future. Therefore, the predictor variables describing on the one hand shrinkage-related land use changes and on the other its effects are most important but at the same time it is still a challenge; to extract such predictor variables from a huge catalogue of urban socio-economic and environmental indicators elaborated by many studies for different landscape types and scales; to derive relevant digital and spatially explicit data as model input to calculate the effects of land use (change) and; to validate the model results at the city and the quarter level (scale) as well as to prove the response of the (gained/released) ecosystem service (environmental quality) at the city and at quarter level (closing the circle). Here, the author will give some expressive examples showing the derivation of predictor variables for modelling peri-urban growth and inner city shrinkage as well as its effects on water balance, habitat quality (urban green network) and recreational space. Of major interest is the approach of how to tackle the problem of urban shrinkage in spatially explicit land use (change) modelling (Haase et al. 2004).

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www-sre.wu-wien.ac.at/ersa/ersaconfs/ersa05/papers/322.pdf
    Download Restriction: no

    Bibliographic Info

    Paper provided by European Regional Science Association in its series ERSA conference papers with number ersa05p322.

    as in new window
    Length:
    Date of creation: Aug 2005
    Date of revision:
    Handle: RePEc:wiw:wiwrsa:ersa05p322

    Contact details of provider:
    Postal: Welthandelsplatz 1, 1020 Vienna, Austria
    Web page: http://www.ersa.org

    Related research

    Keywords:

    This paper has been announced in the following NEP Reports:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. K C Clarke & S Hoppen & L Gaydos, 1997. "A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area," Environment and Planning B: Planning and Design, Pion Ltd, London, vol. 24(2), pages 247-261, March.
    2. Ekins, Paul & Folke, Carl & De Groot, Rudolf, 2003. "Identifying critical natural capital," Ecological Economics, Elsevier, vol. 44(2-3), pages 159-163, March.
    3. Ricardo J. Caballero & Mohamad L. Hammour, 1997. "Jobless Growth: Appropriability, Factor Substitution, and Unemployment," NBER Working Papers 6221, National Bureau of Economic Research, Inc.
    4. Landis, John D., 1994. "The California Urban Futures Model: A New Generation of Metropolitan Simulation Models," University of California Transportation Center, Working Papers qt9pb6g3g6, University of California Transportation Center.
    5. Bolund, Per & Hunhammar, Sven, 1999. "Ecosystem services in urban areas," Ecological Economics, Elsevier, vol. 29(2), pages 293-301, May.
    6. de Groot, Rudolf S. & Wilson, Matthew A. & Boumans, Roelof M. J., 2002. "A typology for the classification, description and valuation of ecosystem functions, goods and services," Ecological Economics, Elsevier, vol. 41(3), pages 393-408, June.
    7. J D Landis, 1994. "The California Urban Futures Model: a new generation of metropolitan simulation models," Environment and Planning B: Planning and Design, Pion Ltd, London, vol. 21(4), pages 399-420, July.
    8. Kathleen P. Bell & Nancy E. Bockstael, 2000. "Applying the Generalized-Moments Estimation Approach to Spatial Problems Involving Microlevel Data," The Review of Economics and Statistics, MIT Press, vol. 82(1), pages 72-82, February.
    9. R White & G Engelen & I Uljee, 1997. "The use of constrained cellular automata for high-resolution modelling of urban land-use dynamics," Environment and Planning B: Planning and Design, Pion Ltd, London, vol. 24(3), pages 323-343, May.
    10. F Wu & C J Webster, 1998. "Simulation of land development through the integration of cellular automata and multicriteria evaluation," Environment and Planning B: Planning and Design, Pion Ltd, London, vol. 25(1), pages 103-126, January.
    11. Deutsch, Lisa & Folke, Carl & Skanberg, Kristian, 2003. "The critical natural capital of ecosystem performance as insurance for human well-being," Ecological Economics, Elsevier, vol. 44(2-3), pages 205-217, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:wiw:wiwrsa:ersa05p322. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Gunther Maier).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.