IDEAS home Printed from https://ideas.repec.org/p/tse/wpaper/31701.html
   My bibliography  Save this paper

Interpreting the impact of explanatory variables in compositional models

Author

Listed:
  • Morais, Joanna
  • Thomas-Agnan, Christine
  • Simioni, Michel

Abstract

Regression models have been developed for the case where the dependent variable is a vector of shares. Some of them, from the marketing literature, are easy to interpret but they are quite simple and can only be complexified at the expense of a very large number of parameters to estimate. Other models, from the mathematical literature, are called compositional regression models and are based on the simplicial geometry (a vector of shares is called a composition, shares are components, and a composition lies in the simplex). These models are transformation models: they use a log-ratio transformation of shares. They are very flexible in terms of explanatory variables and complexity (component-specific and cross-effect parameters), but their interpretation is not straightforward, due to the fact that shares add up to one. This paper combines both literatures in order to obtain a performing market-share model allowing to get relevant and appropriate interpretations, which can be used for decision making in practical cases. For example, we are interested in modeling the impact of media investments on automobile manufacturers sales. In order to take into account the competition, we model the brands market-shares as a function of (relative) media investments. We furthermore focus on compositional models where some explanatory variables are also compositional. Two specifications are possible: in Model A, a unique coefficient is associated to each compositional explanatory variable, whereas in Model B a compositional explanatory variable is associated to component-specific and cross-effect coefficients. Model A and Model B are estimated for our application in the B segment of the French automobile market, from 2003 to 2015. In order to enhance the interpretability of these models, we present different types of impact assessment measures (marginal effects, elasticities and odds ratios) and we show that elasticities are particularly useful to isolate the impact of an explanatory variable on a particular share. We show that elasticities can be equivalently computed from the transformed model and from the model in the simplex and that they are linked to directional C-derivatives of simplex-valued function of a simplex variable. Direct and cross effects of media investments are computed for both models. Model B shows interesting non-symmetric synergies between brands, and Renault seems to be the most elastic brand to its own media investments. In order to determine if component-specific and cross-effect parameters are needed to improve the quality of the model (Model B) or if a global parameter is reasonable (Model A), we compare the goodness-of-fit of the two models using (out-of-sample) quality measures adapted for share data.

Suggested Citation

  • Morais, Joanna & Thomas-Agnan, Christine & Simioni, Michel, 2017. "Interpreting the impact of explanatory variables in compositional models," TSE Working Papers 17-805, Toulouse School of Economics (TSE).
  • Handle: RePEc:tse:wpaper:31701
    as

    Download full text from publisher

    File URL: https://www.tse-fr.eu/sites/default/files/TSE/documents/doc/wp/2017/wp_tse_805.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Morais, Joanna & Simioni, Michel & Thomas-Agnan, Christine, 2016. "A tour of regression models for explaining shares," TSE Working Papers 16-742, Toulouse School of Economics (TSE).
    2. K. Hron & P. Filzmoser & K. Thompson, 2012. "Linear regression with compositional explanatory variables," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(5), pages 1115-1128, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Morais, Joanna & Trinh, Thi-Huong, 2017. "Impact of socioeconomic factors on nutritional diet in Vietnam from 2004 to 2014: new insights using compositional data analysis," TSE Working Papers 17-825, Toulouse School of Economics (TSE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikola Štefelová & Andreas Alfons & Javier Palarea-Albaladejo & Peter Filzmoser & Karel Hron, 2021. "Robust regression with compositional covariates including cellwise outliers," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(4), pages 869-909, December.
    2. Morais, Joanna & Trinh, Thi-Huong, 2017. "Impact of socioeconomic factors on nutritional diet in Vietnam from 2004 to 2014: new insights using compositional data analysis," TSE Working Papers 17-825, Toulouse School of Economics (TSE).
    3. Mauricio Velasquez, 2016. "Compositions vs Gini: A new metric to evaluate the effects of land-income disparities," 2016 Papers pve364, Job Market Papers.
    4. Janina Janurek & Sascha Abdel Hadi & Andreas Mojzisch & Jan Alexander Häusser, 2018. "The Association of the 24 Hour Distribution of Time Spent in Physical Activity, Work, and Sleep with Emotional Exhaustion," IJERPH, MDPI, vol. 15(9), pages 1-14, September.
    5. J. A. Martín-Fernández, 2021. "“Compositional Data Analysis in Practice” by Michael Greenacre Universitat Pompeu Fabra (Barcelona, Spain), Chapman and Hall/CRC, 2018," Journal of Classification, Springer;The Classification Society, vol. 38(1), pages 109-111, April.
    6. Andriansyah, Andriansyah & Messinis, George, 2016. "Intended use of IPO proceeds and firm performance: A quantile regression approach," Pacific-Basin Finance Journal, Elsevier, vol. 36(C), pages 14-30.
    7. Zhao, T.; & Sutton, M.; & Meacock, M.;, 2023. "Use of compositional covariates in linear regression: problems and solutions," Health, Econometrics and Data Group (HEDG) Working Papers 23/16, HEDG, c/o Department of Economics, University of York.
    8. Jacob Fiksel & Scott Zeger & Abhirup Datta, 2022. "A transformation‐free linear regression for compositional outcomes and predictors," Biometrics, The International Biometric Society, vol. 78(3), pages 974-987, September.
    9. Biyun Guo & Taiping Xie & M.V. Subrahmanyam, 2019. "The Impact of China’s Grain for Green Program on Rural Economy and Precipitation: A Case Study of Yan River Basin in the Loess Plateau," Sustainability, MDPI, vol. 11(19), pages 1-18, September.
    10. Joanna Morais & Christine Thomas-Agnan & Michel Simioni, 2017. "Interpretation of explanatory variables impacts in compositional regression models," Working Papers hal-01563362, HAL.
    11. Thomas-Agnan, Christine & Morais, Joanna, 2019. "Covariates impacts in compositional models and simplicial derivatives," TSE Working Papers 19-1057, Toulouse School of Economics (TSE).
    12. Dorothea Dumuid & Željko Pedišić & Javier Palarea-Albaladejo & Josep Antoni Martín-Fernández & Karel Hron & Timothy Olds, 2020. "Compositional Data Analysis in Time-Use Epidemiology: What, Why, How," IJERPH, MDPI, vol. 17(7), pages 1-17, March.
    13. Huiwen Wang & Zhichao Wang & Shanshan Wang, 2021. "Sliced inverse regression method for multivariate compositional data modeling," Statistical Papers, Springer, vol. 62(1), pages 361-393, February.
    14. Rieser, Christopher & Filzmoser, Peter, 2023. "Extending compositional data analysis from a graph signal processing perspective," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    15. Haixiang Zhang & Jun Chen & Zhigang Li & Lei Liu, 2021. "Testing for Mediation Effect with Application to Human Microbiome Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(2), pages 313-328, July.
    16. Defever, F. & Riaño, A., 2022. "Firm-Destination Heterogeneity and the Distribution of Export Intensity," Working Papers 22/01, Department of Economics, City University London.
    17. Quim Zaldo-Aubanell & Ferran Campillo i López & Albert Bach & Isabel Serra & Joan Olivet-Vila & Marc Saez & David Pino & Roser Maneja, 2021. "Community Risk Factors in the COVID-19 Incidence and Mortality in Catalonia (Spain). A Population-Based Study," IJERPH, MDPI, vol. 18(7), pages 1-20, April.
    18. Mishra, Aditya & Müller, Christian L., 2022. "Robust regression with compositional covariates," Computational Statistics & Data Analysis, Elsevier, vol. 165(C).
    19. Roel Verbelen & Katrien Antonio & Gerda Claeskens, 2018. "Unravelling the predictive power of telematics data in car insurance pricing," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1275-1304, November.
    20. Dargel, Lukas & Thomas-Agnan, Christine, 2023. "Share-ratio interpretations of compositional regression models," TSE Working Papers 23-1456, Toulouse School of Economics (TSE), revised 20 Sep 2023.

    More about this item

    Keywords

    Elasticity; odds ratio; marginal effect; compositional model; compositional differential calculus; market-shares; media investments impact;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • C35 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions
    • C46 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Specific Distributions
    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis
    • M31 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising - - - Marketing

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tse:wpaper:31701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/tsetofr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.