IDEAS home Printed from https://ideas.repec.org/p/tse/wpaper/125748.html
   My bibliography  Save this paper

Risk Quantization by Magnitude and Propensity

Author

Listed:
  • Faugeras, Olivier
  • Pages, Gilles

Abstract

We propose a novel approach in the assessment of a random risk variable X by introducing magnitude-propensity risk measures (mX , pX ). This bivariate measure intends to account for the dual aspect of risk, where the magnitudes x of X tell how high are the losses incurred, whereas the probabilities P (X = x) reveal how often one has to expect to su˙er such losses. The basic idea is to simultaneously quantify both the severity mX and the propensity pX of the real-valued risk X. This is to be contrasted with traditional univariate risk measures, like VaR or CVaR, which typ-ically conflate both e˙ects. In its simplest form, (mX , pX ) is obtained by mass transportation in Wasserstein metric of the law of X to a two-points {0, mX} discrete distribution with mass pX at mX . The approach can also be formulated as a constrained optimal quantization problem. This allows for an informative comparison of risks on both the magnitude and propensity scales. Several examples illustrate the usefulness of the proposed approach. Some variants, extensions and applications are also considered.

Suggested Citation

  • Faugeras, Olivier & Pages, Gilles, 2021. "Risk Quantization by Magnitude and Propensity," TSE Working Papers 21-1226, Toulouse School of Economics (TSE), revised Aug 2022.
  • Handle: RePEc:tse:wpaper:125748
    as

    Download full text from publisher

    File URL: https://www.tse-fr.eu/sites/default/files/TSE/documents/doc/wp/2021/wp_tse_1226.pdf
    File Function: Full Text
    Download Restriction: no

    File URL: https://www.tse-fr.eu/sites/default/files/TSE/documents/doc/by/faugeras/appendix_code_supplementary_material.pdf
    File Function: Annexe
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paul Embrechts & Giovanni Puccetti & Ludger Rüschendorf & Ruodu Wang & Antonela Beleraj, 2014. "An Academic Response to Basel 3.5," Risks, MDPI, vol. 2(1), pages 1-24, February.
    2. Puccetti, Giovanni, 2013. "Sharp bounds on the expected shortfall for a sum of dependent random variables," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1227-1232.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edgars Jakobsons & Steven Vanduffel, 2015. "Dependence Uncertainty Bounds for the Expectile of a Portfolio," Risks, MDPI, vol. 3(4), pages 1-25, December.
    2. Paul Embrechts & Bin Wang & Ruodu Wang, 2015. "Aggregation-robustness and model uncertainty of regulatory risk measures," Finance and Stochastics, Springer, vol. 19(4), pages 763-790, October.
    3. Bignozzi, Valeria & Puccetti, Giovanni & Rüschendorf, Ludger, 2015. "Reducing model risk via positive and negative dependence assumptions," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 17-26.
    4. Thibaut Lux & Antonis Papapantoleon, 2016. "Model-free bounds on Value-at-Risk using extreme value information and statistical distances," Papers 1610.09734, arXiv.org, revised Nov 2018.
    5. Bassetti, Federico & De Giuli, Maria Elena & Nicolino, Enrica & Tarantola, Claudia, 2018. "Multivariate dependence analysis via tree copula models: An application to one-year forward energy contracts," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1107-1121.
    6. Koch-Medina, Pablo & Munari, Cosimo, 2016. "Unexpected shortfalls of Expected Shortfall: Extreme default profiles and regulatory arbitrage," Journal of Banking & Finance, Elsevier, vol. 62(C), pages 141-151.
    7. Henryk Zähle, 2022. "A concept of copula robustness and its applications in quantitative risk management," Finance and Stochastics, Springer, vol. 26(4), pages 825-875, October.
    8. Hofert Marius & Memartoluie Amir & Saunders David & Wirjanto Tony, 2017. "Improved algorithms for computing worst Value-at-Risk," Statistics & Risk Modeling, De Gruyter, vol. 34(1-2), pages 13-31, June.
    9. Hirbod Assa & Liyuan Lin & Ruodu Wang, 2022. "Calibrating distribution models from PELVE," Papers 2204.08882, arXiv.org, revised Jun 2023.
    10. Cheung, Ka Chun & Lo, Ambrose, 2013. "General lower bounds on convex functionals of aggregate sums," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 884-896.
    11. Bellini, Fabio & Fadina, Tolulope & Wang, Ruodu & Wei, Yunran, 2022. "Parametric measures of variability induced by risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 270-284.
    12. Xia Han & Liyuan Lin & Ruodu Wang, 2023. "Diversification quotients based on VaR and ES," Papers 2301.03517, arXiv.org, revised May 2023.
    13. Wang, Bin & Wang, Ruodu, 2015. "Extreme negative dependence and risk aggregation," Journal of Multivariate Analysis, Elsevier, vol. 136(C), pages 12-25.
    14. Michele Leonardo Bianchi & Gian Luca Tassinari & Frank J. Fabozzi, 2016. "Riding With The Four Horsemen And The Multivariate Normal Tempered Stable Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-28, June.
    15. A. Ford Ramsey & Barry K. Goodwin, 2019. "Value-at-Risk and Models of Dependence in the U.S. Federal Crop Insurance Program," JRFM, MDPI, vol. 12(2), pages 1-21, April.
    16. Tobias Fissler & Johanna F. Ziegel, 2019. "Evaluating Range Value at Risk Forecasts," Papers 1902.04489, arXiv.org, revised Nov 2020.
    17. Jose Blanchet & Henry Lam & Yang Liu & Ruodu Wang, 2020. "Convolution Bounds on Quantile Aggregation," Papers 2007.09320, arXiv.org, revised Apr 2024.
    18. Ruodu Wang & Ricardas Zitikis, 2018. "Weak comonotonicity," Papers 1812.04827, arXiv.org, revised Sep 2019.
    19. Anulekha Dhara & Bikramjit Das & Karthik Natarajan, 2017. "Worst-Case Expected Shortfall with Univariate and Bivariate Marginals," Papers 1701.04167, arXiv.org.
    20. Alejandro Balbás & Iván Blanco & José Garrido, 2014. "Measuring Risk When Expected Losses Are Unbounded," Risks, MDPI, vol. 2(4), pages 1-14, September.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tse:wpaper:125748. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/tsetofr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.