IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v61y2015icp17-26.html
   My bibliography  Save this article

Reducing model risk via positive and negative dependence assumptions

Author

Listed:
  • Bignozzi, Valeria
  • Puccetti, Giovanni
  • Rüschendorf, Ludger

Abstract

We give analytical bounds on the Value-at-Risk and on convex risk measures for a portfolio of random variables with fixed marginal distributions under an additional positive dependence structure. We show that assuming positive dependence information in our model leads to reduced dependence uncertainty spreads compared to the case where only marginals information is known. In more detail, we show that in our model the assumption of a positive dependence structure improves the best-possible lower estimate of a risk measure, while leaving unchanged its worst-possible upper risk bounds. In a similar way, we derive for convex risk measures that the assumption of a negative dependence structure leads to improved upper bounds for the risk while it does not help to increase the lower risk bounds in an essential way. As a result we find that additional assumptions on the dependence structure may result in essentially improved risk bounds.

Suggested Citation

  • Bignozzi, Valeria & Puccetti, Giovanni & Rüschendorf, Ludger, 2015. "Reducing model risk via positive and negative dependence assumptions," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 17-26.
  • Handle: RePEc:eee:insuma:v:61:y:2015:i:c:p:17-26
    DOI: 10.1016/j.insmatheco.2014.11.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668714001450
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2014.11.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Puccetti, Giovanni & Wang, Bin & Wang, Ruodu, 2013. "Complete mixability and asymptotic equivalence of worst-possible VaR and ES estimates," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 821-828.
    2. Paul Embrechts & Giovanni Puccetti & Ludger Rüschendorf & Ruodu Wang & Antonela Beleraj, 2014. "An Academic Response to Basel 3.5," Risks, MDPI, vol. 2(1), pages 1-24, February.
    3. Embrechts, Paul & Puccetti, Giovanni & Rüschendorf, Ludger, 2013. "Model uncertainty and VaR aggregation," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 2750-2764.
    4. Wang, Bin & Wang, Ruodu, 2011. "The complete mixability and convex minimization problems with monotone marginal densities," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1344-1360, November.
    5. Paul Embrechts & Giovanni Puccetti, 2006. "Aggregating risk capital, with an application to operational risk," The Geneva Papers on Risk and Insurance Theory, Springer;International Association for the Study of Insurance Economics (The Geneva Association), vol. 31(2), pages 71-90, December.
    6. Denuit, M. & Genest, C. & Marceau, E., 1999. "Stochastic bounds on sums of dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 25(1), pages 85-104, September.
    7. Johanna F. Ziegel, 2013. "Coherence and elicitability," Papers 1303.1690, arXiv.org, revised Mar 2014.
    8. Puccetti, Giovanni, 2013. "Sharp bounds on the expected shortfall for a sum of dependent random variables," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1227-1232.
    9. Rama Cont, 2006. "Model Uncertainty And Its Impact On The Pricing Of Derivative Instruments," Mathematical Finance, Wiley Blackwell, vol. 16(3), pages 519-547, July.
    10. Bernard, Carole & Jiang, Xiao & Wang, Ruodu, 2014. "Risk aggregation with dependence uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 93-108.
    11. Bauerle, Nicole & Muller, Alfred, 2006. "Stochastic orders and risk measures: Consistency and bounds," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 132-148, February.
    12. Rama Cont, 2006. "Model uncertainty and its impact on the pricing of derivative instruments," Post-Print halshs-00002695, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Di Lascio, F. Marta L. & Giammusso, Davide & Puccetti, Giovanni, 2018. "A clustering approach and a rule of thumb for risk aggregation," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 236-248.
    2. Zalzadeh, Saeed & Pellerey, Franco, 2016. "A positive dependence notion based on componentwise unimodality of copulas," Statistics & Probability Letters, Elsevier, vol. 112(C), pages 51-57.
    3. Rüschendorf, L., 2019. "Analysis of risk bounds in partially specified additive factor models," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 115-121.
    4. Edgars Jakobsons & Steven Vanduffel, 2015. "Dependence Uncertainty Bounds for the Expectile of a Portfolio," Risks, MDPI, vol. 3(4), pages 1-25, December.
    5. Hofert Marius & Memartoluie Amir & Saunders David & Wirjanto Tony, 2017. "Improved algorithms for computing worst Value-at-Risk," Statistics & Risk Modeling, De Gruyter, vol. 34(1-2), pages 13-31, June.
    6. Rüschendorf Ludger & Witting Julian, 2017. "VaR bounds in models with partial dependence information on subgroups," Dependence Modeling, De Gruyter, vol. 5(1), pages 59-74, January.
    7. Carole Bernard & Ludger Rüschendorf & Steven Vanduffel & Ruodu Wang, 2017. "Risk bounds for factor models," Finance and Stochastics, Springer, vol. 21(3), pages 631-659, July.
    8. Rüschendorf L., 2018. "Risk bounds with additional information on functionals of the risk vector," Dependence Modeling, De Gruyter, vol. 6(1), pages 102-113, June.
    9. Bernard, Carole & Kazzi, Rodrigue & Vanduffel, Steven, 2020. "Range Value-at-Risk bounds for unimodal distributions under partial information," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 9-24.
    10. Lux, Thibaut & Papapantoleon, Antonis, 2019. "Model-free bounds on Value-at-Risk using extreme value information and statistical distances," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 73-83.
    11. Vytaras Brazauskas & Sahadeb Upretee, 2019. "Model Efficiency and Uncertainty in Quantile Estimation of Loss Severity Distributions," Risks, MDPI, vol. 7(2), pages 1-16, May.
    12. Asimit, Alexandru V. & Gerrard, Russell, 2016. "On the worst and least possible asymptotic dependence," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 218-234.
    13. Hanbali, Hamza & Dhaene, Jan & Linders, Daniël, 2022. "Dependence bounds for the difference of stop-loss payoffs on the difference of two random variables," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 22-37.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bernard, Carole & Vanduffel, Steven, 2015. "A new approach to assessing model risk in high dimensions," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 166-178.
    2. Bernard, Carole & Jiang, Xiao & Wang, Ruodu, 2014. "Risk aggregation with dependence uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 93-108.
    3. Carole Bernard & Ludger Rüschendorf & Steven Vanduffel & Ruodu Wang, 2017. "Risk bounds for factor models," Finance and Stochastics, Springer, vol. 21(3), pages 631-659, July.
    4. Edgars Jakobsons & Steven Vanduffel, 2015. "Dependence Uncertainty Bounds for the Expectile of a Portfolio," Risks, MDPI, vol. 3(4), pages 1-25, December.
    5. Paul Embrechts & Bin Wang & Ruodu Wang, 2015. "Aggregation-robustness and model uncertainty of regulatory risk measures," Finance and Stochastics, Springer, vol. 19(4), pages 763-790, October.
    6. Wang, Bin & Wang, Ruodu, 2015. "Extreme negative dependence and risk aggregation," Journal of Multivariate Analysis, Elsevier, vol. 136(C), pages 12-25.
    7. Mao, Tiantian & Wang, Ruodu, 2015. "On aggregation sets and lower-convex sets," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 170-181.
    8. Carole Bernard & Ludger Rüschendorf & Steven Vanduffel, 2017. "Value-at-Risk Bounds With Variance Constraints," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(3), pages 923-959, September.
    9. Bignozzi, Valeria & Puccetti, Giovanni, 2015. "Studying mixability with supermodular aggregating functions," Statistics & Probability Letters, Elsevier, vol. 100(C), pages 48-55.
    10. Barrieu, Pauline & Scandolo, Giacomo, 2015. "Assessing financial model risk," European Journal of Operational Research, Elsevier, vol. 242(2), pages 546-556.
    11. Roberto Fontana & Elisa Luciano & Patrizia Semeraro, 2021. "Model risk in credit risk," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 176-202, January.
    12. Lauzier, Jean-Gabriel & Lin, Liyuan & Wang, Ruodu, 2023. "Pairwise counter-monotonicity," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 279-287.
    13. Jose Blanchet & Henry Lam & Yang Liu & Ruodu Wang, 2020. "Convolution Bounds on Quantile Aggregation," Papers 2007.09320, arXiv.org, revised May 2023.
    14. Takaaki Koike & Liyuan Lin & Ruodu Wang, 2022. "Joint mixability and notions of negative dependence," Papers 2204.11438, arXiv.org, revised Jan 2024.
    15. Ruodu Wang & Zuo Quan Xu & Xun Yu Zhou, 2019. "Dual utilities on risk aggregation under dependence uncertainty," Finance and Stochastics, Springer, vol. 23(4), pages 1025-1048, October.
    16. Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524, January.
    17. Lux, Thibaut & Papapantoleon, Antonis, 2019. "Model-free bounds on Value-at-Risk using extreme value information and statistical distances," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 73-83.
    18. Carole Bernard & Don McLeish, 2016. "Algorithms for Finding Copulas Minimizing Convex Functions of Sums," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(05), pages 1-26, October.
    19. Bin Wang & Ruodu Wang, 2016. "Joint Mixability," Mathematics of Operations Research, INFORMS, vol. 41(3), pages 808-826, August.
    20. Rüschendorf, L., 2019. "Analysis of risk bounds in partially specified additive factor models," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 115-121.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:61:y:2015:i:c:p:17-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.